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GeoForschungsZentrum Potsdam (GFZ), Potsdam, Germany

Jan Seibert

Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

Stefan Uhlenbrook

Institute of Hydrology, University of Freiburg, Freiburg, Germany

Received 7 November 2003; revised 11 March 2004; accepted 25 March 2004; published 25 May 2004.

[1] A key component to understanding and predicting water fluxes and water quality in
river basins is the spatial distribution of water-saturated areas. There is limited knowledge
on spatial patterns of saturated areas, their relation to landscape characteristics and
processes, and the ability of hydrological models to represent the observed spatial patterns,
particularly at the large scales most relevant for water resources management. In this
study, saturated areas were mapped in two mesoscale (18 and 40 km2), humid temperate
basins. Geobotanical and pedological criteria were used to achieve a consistent
time-integrated delineation of saturated areas. Using commonly available spatial data on
landscape characteristics, various terrain indices were evaluated for their ability to predict
the observed patterns. Quantitative performance criteria describing the agreement of
modeled and observed spatial patterns included cell-by-cell and cell-neighborhood
approaches. Upslope contributing area was the most important single factor explaining the
observed pattern. An improved pattern was obtained for the topographic wetness index
(TOPMODEL index). However, the performance was markedly sensitive to the algorithms
used for calculation of upslope contributing area and slope gradient. Other factors such as
soil or climate were of less value for improving the predictions. The optimum spatial
agreement of observed and modeled saturated areas was about 50% for a combined
soil-climate-topographic index. Geological features (bedrock fractures) partly explained
the residual pattern. Using an independent test catchment, it was shown that the index
approach can be transferred to basins with similar physiographic characteristics for
estimating the general pattern of saturated areas. INDEX TERMS: 1866 Hydrology: Soil

moisture; 1860 Hydrology: Runoff and streamflow; KEYWORDS: saturated area, mesoscale, spatial pattern,

terrain index, pattern comparison

Citation: Güntner, A., J. Seibert, and S. Uhlenbrook (2004), Modeling spatial patterns of saturated areas: An evaluation of different

terrain indices, Water Resour. Res., 40, W05114, doi:10.1029/2003WR002864.

1. Introduction

[2] Saturated areas have a major influence on a range of
hydrological processes such as runoff processes and flooding
[e.g.,Dunne and Black, 1970], solute transport [e.g.,Curmi et
al., 1998], and land-atmosphere interactions [e.g.,Quinn and
Beven, 1993; Entekhabi et al., 1996], as well as pedogenic
and geomorphological processes [e.g., Beven and Kirkby,
1993]. To quantify catchment responses, i.e., water fluxes and
water quality, a definition of major hydrological processes
within a catchment including their location and spatial extent
is crucial. Saturation excess runoff, which is different in
hydrochemistry and runoff dynamics from other runoff
components generated in the basin, has been observed to be
an important runoff component in many humid catchments

[e.g., Anderson and Burt, 1990]. Thus the spatial and often
time-variable delineation of saturated areas is a key to
understanding and predicting catchment responses.
[3] The location of saturated areas can be estimated using

detailed, highly parameterized approaches that model all
governing processes defining the distribution of soil mois-
ture in space and time, but this approach is impractical
because of data limitations and a lack of understanding of
the governing processes at scales from plots to catchments.
Progress has recently been made in mapping saturated areas
by remote sensing [e.g., Troch et al., 2001], but there remain
problems with pixel resolution and the difficulty to distin-
guish the signal of surface saturated areas from other signals.
An alternative method is the use of terrain indices as an
attempt to derive soil moisture patterns directly from land-
scape characteristics thought to correlate with the dominant
factors of process control [e.g., Kirkby, 1975; Western et al.,
1999]. As wet areas were often found to be associated with
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topographic depressions and flat areas, the indices focus on
topographic measures as a first-order control of soil moisture
[Kirkby, 1975; Beven and Kirkby, 1979; O’Loughlin, 1986].
They are often based on widely available digital elevation
models (DEM) and are easy to calculate using a geographic
information system (GIS). However, the manner in which
topographic information is explored varies for the different
indices. Various topographic attributes such as surface slope,
upslope area, curvature, or combinations of these primary
attributes can be used. Additionally, index values may vary
depending on the algorithm used for the calculations. For
instance, algorithms for calculating the upslope area differ
with regard to the treatment of topographic sinks and
channel initiation, or with regard to the assignment of flow
directions within the generalized representation of the real
topography in a DEM [e.g., Quinn et al., 1995]. Barling et
al. [1994] developed a wetness index with a time-variable
contributing upslope area that can be smaller than the area
derived from DEM analysis.
[4] Some terrain indices account for factors other than

topography that may influence soil moisture patterns, nota-
bly soil characteristics [Beven, 1986] or available energy
from solar radiation [Moore et al., 1991; Gómez-Plaza et
al., 2001]. However, a more complex index does not
necessarily ensure better predictions of soil moisture status.
The seasonal variability of dominant process control on soil
moisture status and wetness patterns [Grayson et al., 1997;
Western et al., 1999; Williams et al., 2003] adds an
additional complexity to the application of terrain indices.
Other possible causes of wet areas such as land use, mass
movements (landslides), geology and tectonics, as well as
anthropogenic influences are often not well understood or
surveyed, particularly at larger scales, and are therefore
difficult to parameterize and include in a terrain index.
[5] Different terrain indices and different calculation

algorithms as a tool for the prediction of saturated areas
or soil moisture patterns have not been analyzed extensively,
particularly not for larger areas. Only a few studies have
investigated the predictive power of terrain indices by
comparing estimated and observed patterns on larger areas
(e.g., that of Rodhe and Seibert [1999], who used the spatial
distribution of wetlands to validate the prediction of the
TOPMODEL wetness index), and most studies concentrate
on small areas of about 1 km2 or less [Beven and Kirkby,
1979; Burt and Butcher, 1985; Moore et al., 1988; Nyberg,
1996; Ambroise et al., 1996; Gineste et al., 1998;Western et
al., 1999; Blazkova et al., 2002; Williams et al., 2003],
mainly because of the limited availability of suitable data at
larger scales. On the basis of the studies at small scales, it is
difficult to assess the ability of terrain indices to predict soil
moisture patterns at the landscape scale. Here additional
factors such as variable water balance and higher spatial
heterogeneity come into play. An extended assessment of
the predictive power of terrain indices beyond the experi-
mental catchment scale is, however, required as hydrolog-
ical models for the river basin scale use these indices to
account for smaller-scale soil moisture variability with the
benefit of keeping a comparatively simple model structure
and parameterization (e.g., TOPMODEL [Beven and
Kirkby, 1979] and SEWAB [Mengelkamp et al., 2001]). In
addition, for setting up process-oriented catchment models
that require the delineation of zones of different dominating

runoff processes as in the model of Uhlenbrook et al.
[2004b], a modeling strategy is crucial to avoid time
consuming mapping when transferring the model to other
basins [Scherrer and Naef, 2003; Uhlenbrook, 2003]. In this
context, the extended assessment of terrain indices is of
great interest because the indices have the potential to
contribute to delineating, e.g., the zones of saturation-excess
runoff. In general, it has frequently been emphasized during
recent years that the validation of spatial patterns against
observations is a key issue for assessing model capabilities
and uncertainties and for model improvements, even for
practical applications in larger river basins [e.g., Refsgaard,
2001]. Franks et al. [1998] and Blazkova et al. [2002] used
patterns of saturated areas to constrain the uncertainty of
model parameters.
[6] For pattern comparison in the context of hydrological

applications, however, thus far only a few methods have
been used in practice [Grayson and Blöschl, 2001]. Com-
paring observed versus simulated binary patterns (e.g.,
saturated/nonsaturated areas) may include the following
approaches: (1) visual comparison; (2) comparison of land-
scape metrics that describe the spatial configuration
of patterns, such as fragmentation, irregularity, or complex-
ity of shape [e.g., Haines-Young and Chopping, 1996;
Gustafson, 1998]; (3) cell-by-cell comparisons, for example,
the Kappa measure [Cohen, 1960], which is frequently used
in map comparison of categorical data [e.g., Pontius, 2000]
(for the binary case, it may be reduced to a counting of cells
that have a certain attribute, e.g., saturated area, in both the
observed and simulated patterns); (4) extensions of the strict
cell-by-cell comparisons, e.g., accounting for shifts in the
location of patterns [Grayson and Blöschl, 2001] or account-
ing for the cell neighborhood [Constanza, 1989] due to
uncertainty of location, for instance [Hagen, 2003]. How-
ever, no standard on which approaches should be used for
pattern comparison in hydrological applications for a given
question of interest, pattern type, and scale or resolution yet
exists.
[7] The objective of this study was to evaluate the

predictive power of different terrain indices for modeling
spatial patterns of saturated areas in a mesoscale catchment
(40 km2), a spatial scale that is relevant for water resources
management. Therefore a mapping method for saturated
areas was developed that was for this large scale. It was our
objective to examine the relevance of topographic attributes
as well as other terrain characteristics for explaining the
observed saturated area patterns. For that purpose, widely
available spatial data sets were used to define and apply
combined terrain indices. To evaluate the agreement of the
simulated and observed spatial patterns, different quantita-
tive performance criteria were developed and their power
for this type of pattern comparison was analyzed. In order to
evaluate the spatial transferability of the index approach for
prediction of saturated area patterns, the approach was also
applied in a neighboring catchment (18.4 km2) with similar
physiographic characteristics.

2. Study Area and Data

2.1. Test Sites

[8] The study was performed primarily in the mesoscale
Brugga basin (40 km2). The neighboring Zastler basin
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(18.4 km2) was used as an additional site for testing the
developed index modeling strategy. Both watersheds are
located in the southern Black Forest Mountains in south-
western Germany (Figure 1). These are mountainous water-
sheds with elevation ranging from 438 to 1493 m above
mean sea level and nival runoff regimes. The mean annual
precipitation is approximately 1750 mm generating a mean
annual discharge of approximately 1220 mm (values for the
Brugga basin; there are only slight differences for the
Zastler basin). The bedrock consists of gneiss, covered by
weathering material of Pleistocene origin: debris, drift, and
soils of varying depths (0–10 m). The basins are widely
forested (approximately 75%) and the remaining area is
pasture. Urban land use is below 3%.
[9] Preceding experimental studies including investiga-

tions with artificial and environmental tracers [Mehlhorn et
al., 1998; Hoeg et al., 2002; Uhlenbrook et al., 2002] led to
the following conceptual model of three main flow systems
and of runoff generation in the Brugga and Zastler basin
[Uhlenbrook et al., 2002]: (1) Fast runoff components
(surface or near surface runoff) are generated on sealed or
saturated areas and on steep highly permeable slopes
covered by boulder fields. (2) Slow base flow components
(deep groundwater) originate from the fractured hard rock
aquifer and the deeper parts of the weathering zone. (3) An
intermediate flow system contributes mainly from the
(peri)glacial deposits of the hillslopes (shallow groundwa-
ter). This flow system predominates the storm discharge of
larger floods. Springs draining such hillslopes can show
remarkable short-term dynamics [Uhlenbrook et al., 2004a].
A spatial delineation of the Brugga and Zastler basins
into areas of dominant runoff processes was performed
[Uhlenbrook, 2003], based on surface characteristics as well
as geological, pedological, and topographic information, a
map of saturated areas [Güntner et al., 1999], and the
analysis presented in this paper.

2.2. Input Data Sets

[10] The following spatial data sets were available: A
forest habitat map (scale 1:10,000) covering the largest part
of the forested area [Forstliche Versuchsanstalt (FVA),

1996]; geological maps (scale 1:50,000) [Geologisches
Landesamt Baden-Württemberg (GLA), 1977]; a tectonic
map giving the location of faults and fractures in the
crystalline bedrock (scale 1:100,000) [GLA, 1981]; a coarse
resolution soil map (scale 1:200,000) [Landesamt für
Geologie, Rohstoffe und Bergbau Baden Württemberg,
1998]; and a digital elevation model (DEM) with a grid
size of 50 � 50 m2 (vertical resolution 0.1 m) (Figure 1). In
addition, a field survey was executed for mapping the
saturated areas in both catchments (see below).
[11] On the basis of the DEM, the Brugga basin was

classified into three main morphometric landscape units,
i.e., hollows/channels, planes, and ridges. The classification
was done with respect to local concavity or convexity of the
terrain surface using the terrain analysis model LandSerf,
version 1.8 [Wood, 1996, J. D. Wood, LandSerf: Visual-
isation and Analysis of Terrain Models, available at http://
www.soi.city.ac.uk/�jwo/landserf/]. Hollows or channels
are located in areas of concavity, ridges in areas of convex-
ity, and planes in areas without any significant local
concavity or convexity. The fraction of the total Brugga
basin area attributed to each of these three landscape units
was approximately equal (Figures 2a and 5).

2.3. Field Survey of Saturated Areas

[12] Pedological and geobotanical mapping criteria were
applied. Areas were mapped as saturated areas if they
showed hydromorphic characteristics (i.e., gleyed soils with
redox characteristics and high organic content in the topsoil
or peat soils) in the entire soil profile. In addition, the
mapped areas had to have a predominance of wetness-
indicating plants as classified by Ellenberg [1991]. Indicator
plants used in the study area were Aconitum napellus,
Caltha palustris, Carex flava, Filipendula ulmaria, Juncus
acutifloris, Juncus effusus, Myosotis palustris, Ranunculus
flammula, Scirpus sylvaticus, and Viola palustris. Since
these criteria were independent of the soil moisture con-
ditions at the time of mapping, the procedure provided a
long-term averaged pattern of the wettest zones in the basin.
[13] About 60% of the study area was mapped by the

forest habitat survey [FVA, 1996]. The remaining area was

Figure 1. Location and topography of the Brugga and Zastler basins, southern Black Forest Mountains,
southwest Germany.
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mapped in late summer (September and October) after a
dry period. The resulting field maps (observation scale
1:5000) were digitized and transformed into a grid map
with 10 � 10 m2 cell resolution. This appeared to be an
adequate resolution to preserve the small-scale structure of
the observed saturated areas. It should be noted that the
total extent of saturated areas on the digitized vector map
and on the grid map was the same. In the next step, a 50 �
50 m2 grid of saturated areas was generated, with resolu-
tion and location of the grid cells corresponding to the
DEM. For each 50 � 50 m2 grid cell, the areal fraction of
saturated areas was calculated from the original vector
map. Then, 50 � 50 m2 cells were marked as saturated
cells starting with the cell of the largest fraction of mapped
saturated areas and continuing successively until the area
of marked saturated cells matched the total extent of the
mapped saturated area.

3. Terrain Indices and Analysis Methods

3.1. Terrain Indices

[14] For the derivation of spatial fields of terrain indices
as predictors of saturated areas, primary terrain attributes
as well as compound attributes that were combinations of
primary attributes [Moore et al., 1991], were used (Table 1).
All indices were calculated on a cell-by-cell basis for the
50 � 50 m2 grid cells as defined by the DEM.
[15] Curvature (CURV) is a measure of the concavity or

convexity of the terrain surface. It reflects changes in the
hydraulic gradient along hillslopes and the convergence or
divergence of flow pathways. Curvature for each cell was
calculated as a combined tangent and profile curvature for a
3 � 3 cells window [Zevenbergen and Thorne, 1987; Moore
et al., 1991] as implemented in the Geographic Information
System ARC/INFO (Environmental Systems Research
Institute (ESRI), Redlands, California).
[16] Three different algorithms for calculating the surface

slope as a measure of the hydraulic gradient were tested:
First, the slope for each cell was calculated after fitting a
plane to the 3 � 3 cells neighborhood by an average
maximum technique [Burrough, 1986] (mean slope, tan
b3�3). This is a standard method included, for instance, in
the GIS ARC/INFO. Second, the slope was derived as the
average gradient between the cell of interest and all neigh-
boring cells with lower elevation [Quinn et al., 1991] (local

downhill slope, tan blocal). Third, in contrast to these two
methods that consider only the cells immediately adjacent to
the cell of interest, the third method for slope calculations
considered a larger downslope area. For each cell, the
closest downslope cell with a previously defined elevation
difference d was determined. The distance l to this cell
(direct line between cell centers) was then used for slope
calculation according to tan bd = d/ l [ Hjerdt et al. , 2004]
(downslope index, tan bd). The reasoning behind this
method is that it may better represent the groundwater table
gradient because small-scale steps in surface topography not
reflected in the groundwater surface are smoothed using tan
bd due to the larger extent of included cells. Values for d
were set to 25 m (tan bd=25) and 10 m (tan bd=10).
[17] A radiation index (RAD), a simple measure of the

influence of spatially varying evapotranspiration on soil
moisture due to varying radiation energy, was calculated
as the ratio Ri/Rmean. Ri is the total annual solar radiation
input to cell i, calculated with the Arc View GIS extension
Solar Analyst (from Helios Environmental Modeling Insti-
tute HEMI, LLC, Los Alamos, New Mexico), taking slope,
aspect, and shade effects by mountain ridges as the main
influencing factors. Rmean is the mean annual solar radiation
input averaged for all cells of the study area.
[18] The upslope contributing watershed area (UCA) is a

measure of the potential area that can deliver water via
lateral flow pathways and thus influence the soil moisture
status. It is assumed that the larger the contributing area, the
larger the incoming accumulated flow volumes. For this
index, flow directions between cells are to be established
and a procedure corresponding to a ‘‘routing of area’’
between cells is required. Various methods for regular grid
DEMs are presented in the literature [e.g., O’Callaghan and
Mark, 1984; Freeman, 1991; Quinn et al., 1991, 1995; Lea,
1992; Costa-Cabral and Burges, 1994; Holmgren, 1994;
Tarboton, 1997]. In this study, the portion fi of accumulated
upslope area of one upslope cell attributed to each down-
slope cell i was weighted with respect to the slope gradient
tan bi between the uplsope cell and cell i relative to the slope
gradients to all other downslope cells j [Quinn et al., 1991]
(equation (1)).

fi ¼
tan bið Þh

P8

j¼1

tan bj
� �h

for all tan bj > 0 ð1Þ

Figure 2. Spatial distribution of (a) landscape units and (b) soil units in the Brugga basin.
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As proposed by Freeman [1991] and Holmgren [1994], the
strength of this weighting can be adjusted by an exponent h.
For h = 1, the index calculation corresponds to the multiple
flow direction algorithm by Quinn et al. [1991]. For large
values of h (e.g., h > 15) the computations approach those
of the single flow direction algorithm where all the upslope
area is routed to the cell in the steepest downslope direction
[O’Callaghan and Mark, 1984].
[19] In the basic index calculation algorithms [e.g., Quinn

et al., 1991], the accumulation of upslope contributing area
occurs continuously down to the catchment outlet. Never-
theless, accumulated flow may enter a channel and be
exported from the catchment without contributing to the
development of saturated areas in downslope cells. There-
fore a channel initiation threshold (CIT, m2), was used in the
index calculations according to Quinn et al. [1995]. All cells
with an upslope area exceeding CIT and the following
downslope cells in the direction of the steepest gradient
were marked as channel cells. The accumulated area of
channel cells must not exceed CIT. The surplus of upslope
area, i.e., accumulated flow volumes, is considered to
contribute to the channel and is no longer accounted for
in any downslope cell.
[20] The topography-based wetness index of Beven and

Kirkby [1979] (TOPMODEL index, TWI) was used as a
combined index. It is calculated as a combination of the
standardized upslope contributing area a (standardized to
the unit contour length), and the slope tan b as

TWI ¼ ln a= tan bð Þ ð2Þ

Different realizations of the TOPMODEL index with regard
to the manner of determining the upslope contributing area
and the slope value were applied in this study.
[21] Extending the purely topography-based terrain indi-

ces, a soil-topographic index, TSWI, as proposed by Beven
[1986] was applied (equation (3)).

TSWI ¼ ln a= T tan bð Þð Þ ð3Þ

It accounts for the influence of varying soil transmissivity
(for a saturated soil profile), T in m2 d�1. On the basis of
the very limited geological and pedological information
(see data section) and on additional field experiments
[Uhlenbrook et al., 2002], five different terrain units were
distinguished for which markedly different soil character-
istics could be assumed. Rough estimates of the order of
magnitude of transmissivities for each soil unit were made,
assuming an average soil depth to bedrock of 2 m [Hädrich
et al., 1979], and hydraulic conductivities estimated from
soil texture and artificial tracer tests [Mehlhorn et al., 1998]
(Table 2 and Figure 2b). These T values were used as
starting values for the optimization of the soil-topographic
index (see section 4.2).
[22] As a further extension of the (soil) topographic

index, the spatial variability of the climatic water balance
C (rainfall minus evaporation in mm) was taken into
account as an additional measure that may influence the
spatial pattern of soil moisture (climate- (soil) topographic
index, TCWI, TCSWI). C was derived by assuming a linear
decrease of evaporation and an exponentially declining

increase of precipitation with elevation as derived from
climate station data for mean annual values [Uhlenbrook,
1999]. The basic grid size of each cell si (=2500 m2) was
modified (si,mod) as a function of the mean annual
climatic water balance Ci of the cell i relative to the
basin average Cm (equation (4)). By this means, due to
the ‘‘routing of area’’ as a simplified representation of the
routing of water volumes in the topographic part of the
index calculations, the effect of spatially varying climatic
forcing among cells is captured for the downslope soil
moisture status.

si;mod ¼ si
Ci

Cm

ð4Þ

We also tested the combination of TWI with different binary
variables using logistic regression. These binary variables
(see data section for the data sources) were (1) the
neighborhood of tectonic faults and fractures, (2) location
in a topographic depression, and (3) the occurrence of high
or low soil conductivity. The logistic regression formula
predicts the probability p of the occurrence of saturated
areas as a function of the independent variables (xi)
(equation (5)). The parameters bi can be interpreted as odds
ratios for the occurrence of saturated areas (i.e., the
probability for ‘‘saturated’’ divided by the probability for
‘‘nonsaturated’’). The value of exp(bi) gives the relative
amount by which the odds for ‘‘saturated’’ increase (>1) or
decrease (<0) when the value of the independent variable is
increased by one unit.

p ¼ exp yð Þ
1þ exp yð Þ ð5Þ

where

y ¼ b0 þ
X

bi xi

For comparison to the process-based terrain indices
described above, a set of purely randomly distributed index
patterns (RANDOM) was generated by attributing to each
cell of the study area a random value between 0 and 1,
which was drawn from an uniformly distributed random
variable.

3.2. Performance Criteria

[23] A variety of performance criteria were applied to
evaluate the ability of different terrain indices to represent
the spatial pattern of observed saturated areas (see also
Table 3 for an overview and the optimum value for each
criterion).
[24] 1. Criterion krank,50 is the rank correlation coefficient

(after Spearman) between terrain index values and the
fraction of the observed saturated area on the total grid cell
area for the 50 � 50 m2 cells of the study area. Each grid
cell was associated with two rank numbers: (1) the rank of
the cell index value among all index values in the study area
and (2) the rank of the mapped saturated area fraction on
total cell area.
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[25] 2. Criterion krank,200 is the rank correlation coeffi-
cient (after Spearman) between terrain index values and
the fraction of saturated area for aggregated 200 �
200 m2 cells. The terrain index value for each 200 �
200 m2 cell was calculated as the mean of all included
50 � 50 m2 cells. This criterion was introduced to
evaluate the correspondence of patterns at a coarser
spatial resolution where local topographic smooth out
to some extent.
[26] For further performance criteria, the basic principle

was to select that subset of grid cells from each modeled
index pattern that is most prone to surface saturation, i.e.,
the cells with the lowest or highest index values depending
on the index definition. Starting with the cell with the
lowest (or highest) value, all cells with successively larger
(or lower) index values were selected until the fraction
of the selected number of cells in the subset relative to
the number of all cells in the study area was equal to the
fraction of mapped saturated areas to total basin area. The
resulting 50 � 50 m2 cell pattern, M50, was disaggregated
to a 10 � 10 m2 grid resolution (pattern M10) by simply
setting the cell value of each large cell of M50 to all
25 smaller cells in M10. The modeled patterns were then
compared in the form of a binary variable (saturated/
nonsaturated) to the observed patterns both at the 50 �
50 m2 (observed pattern O50) and the 10 � 10 m2 grid
resolution (O10).
[27] 3. Criteria kmatch,10 and kmatch,50 are measures of the

direct spatial coincidence of observed and modeled saturated
areas for a cell-by-cell comparison, as percentage of the

total saturated area (equations (6) and (7) and Figures 3a
and 3b),

kmatch;10 ¼
nþ10
n10

100 ð6Þ

kmatch;50 ¼
nþ50
n50

100 ð7Þ

where n10 and n50 give the total number of saturated grid
cells in the study area for the 10 m and 50 m resolution
grids, respectively; n10

+ is the number of spatially coinciding
modeled and observed saturated areas in patterns M10 and
O10; and n50

+ is the number of spatially coinciding modeled
and observed saturated areas in patterns M50 and O50,
respectively.
[28] 4. Criterion kfuzzy is a fuzzy criterion of spatial

coincidence of observed and modeled saturated areas.
Similar to the concept for map comparison presented by
Hagen [2003], kfuzzy accounts for fuzziness of location, i.e.,
it accounts for modeled saturated areas that do not directly
coincide with observed areas but that are close to them. The
degree of coincidence is defined by a lower value if the
distance between observed and modeled saturated cells is
larger. This criterion considers that deviations in the location
of observed and modeled saturated areas are also due to
(1) the difference in the spatial resolution of modeling (50 m)
and mapping (about 10 m), (2) uncertainties of defining the
exact position in the field, (3) errors in converting the

Table 1. Overview of Tested Terrain Indices

Abbreviation Index Typea Notes

CURV curvature 1
tan b3�3 mean slope 1 gradient calculated from a 3 � 3 cell window
tan blocal local downhill slope 1 gradient to neighboring downslope cells
tan bd downslope index 1 variations of the elevation difference d of 10 and 25 m (tan bd=10 and

tan bd=25)
RAD radiation index 1
UCA upslope contributing area 1 variations of Holmgren factor h and channel initiation threshold CIT
TWI TOPMODEL wetness index 2 combination of UCA and different slope indices
TSWI soil-topographic index 2 combination of TWI and soil characteristics
TCWI, TCSWI climate-(soil) topographic index 2 combination of TWI or TSWI with climatic water balance
RANDOM random index 1 random numbers between 0 and 1

aIndex type 1 is primary index; index type 2 is combined index.

Table 2. Soil Units With Estimated and Optimized Transmissivity T

Unit Description T Estimated, m2 d�1 T Optimized, m2 d�1

1 boulder fields, composed of highly permeable
material on steep slopes with large macropores

1 � 104 1 � 103

2 stratified periglacial drift cover on steeper slopes
with highly permeable boulder horizon as top layer

1 � 103 1 � 103

3 stratified periglacial drift cover on slopes and hilly uplands,
mainly sandy to loamy with varying content of coarse
fragments, including less permeable layers

1 � 100 1 � 100

4 moraine material, loamy, often compacted 1 � 10�1 1 � 100

5 Holocene deposits in the valley bottoms, mainly
loamy sand with varying content of coarse fragments

1 � 101 5 � 100
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observations into a digital map, and (4) uncertainties in
precisely delimiting the extent of saturated areas in the field.
Through qualitative reasoning, a maximum tolerable dis-
tance between observations and model results for which
some degree of correlation could still be assumed was set to
about 50 m. Accordingly, for an observed saturated cell i
being in a radius ri of 5 or more 10 � 10 m2 cells distance
away from any modeled cell, the degree of coincidence fi

with the model was set to 0. Other values of f were defined
according to equation (8) and Figure 3c.

kfuzzy ¼

Pn10
i¼1

fi

n10
100 with fi ¼ 1� 0:2ri ð8Þ

[29] 5. Criteria kdist,o and kdist,m are distance measures that
describe the performance of the terrain indices as a function

Figure 3. Exemplary explanation of the performance criteria, evaluating the agreement of modeled and
observed patterns of saturated areas.
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of the distance between observations and model results.
The criteria are based on patterns O50 and M50 (see also
Figure 3d). kdist,o starts out from each observed saturated
cell i and looks for the closest modeled saturated grid cell j
to define the distance dij as the straight line between the cell
centers. kdist,o is the mean of these distances for all observed
saturated cells (equation (9)). kdist,m reverses the point of
view, starting out from each modeled saturated cell and
looking for the distance dji to the closest observed saturated
cell (equation (10)). kdist,mean is used as a combined distance
criteria (equation (11)).

kdist;o ¼

Pn10
i¼1

dij

n10
ð9Þ

kdist;m ¼

Pn10
j¼1

dji

n10
ð10Þ

kdist;mean ¼
kdist;o þ kdist;m
� �

2
ð11Þ

[30] In addition to the quantitative criteria presented
above, the visual comparison of observed and modeled
spatial patterns was used as qualitative information on
match or mismatch of patterns. To support the visual
description, two landscape metrics were used. (1) The first
is mean patch size of saturated areas (MPS, m2). Grid cells
marked as saturated area are considered to belong to the
same patch if they are adjacent in at least one of eight grid
directions, including the diagonals (eight-neighborhood

rule). MPS is an indicator of pattern fragmentation.
(2) The second is mean shape index (MSI, dimensionless).
MSI is calculated according to equation (12) [Patton, 1975;
Saura and Martı́nez-Millán, 2001]:

MSI ¼

Pnp

i¼1

pi
4� ffiffiffi

ai
p

np
ð12Þ

np is the number of saturated patches in the study area, with
a patch being defined as for MPS above. pi is the perimeter
or total edge length of patch i in m, calculated as the sum of
all side lengths that any grid cell of the patch i shares with
nonsaturated grid cells. ai is the size of patch i in m2. MSI is
a perimeter-area relationship that measures the irregularity
in shape for saturated patches compared to a simple
standard shape, i.e., a square in the raster representation.
MSI is 1 if all saturated patches are squares and results in
higher values with greater patch shape complexity.

4. Results

4.1. Field Survey of Saturated Areas

[31] In most locations, saturated areas could be clearly
delimited in the field by the pedological and geobotanical
criteria. Transitions to places with no wetness-indicating
characteristics have often been observed within a very short
distance (<3 m). In these cases, the extent of saturated areas
was often constrained by steep slopes at their borders. Only
a small number of saturated areas showed a more gradual
transition into places with no wetness-indicating character-
istics, e.g., in flatter sections of the valley bottoms along the
main river.

Table 3. Performance of Terrain Indices to Represent the Observed Pattern of Saturated Areas in the Brugga Basin

Criteria

CIT, ha h MPS, ha MSI krank,50 krank,200

kmatch,10,
%

kmatch,50,
%

kfuzzy,
%

kdist,o,
m

kdist,m,
m

kdist,mean,
m

Perfect fit value - - - - �1 or 1 �1 or 1 100 100 100 0 0 0
Worst case value - - - - 0 0 0 0 0 1 1 1
Observed patterns

O10 (10 m grid) - - 1.17 4.91 - - - - - - - -
O50 (50 m grid) - - 0.93 1.75 - - - - - - - -

Random pattern
RANDOM - - 0.32 1.12 �0.004 0.001 6.5 6.1 20.5 101 182 142

Simple indices
RAD - - 6.33 3.01 �0.046 0.004 2.2 2.3 4.3 538 190 364
CURV - - 1.45 2.01 �0.341 �0.432 16.4 16.3 27.3 196 118 157
tan b3�3 - - 2.06 2.33 �0.226 �0.269 12.1 11.9 19.5 248 195 222
tan blocal - - 2.26 2.51 �0.285 �0.346 19.4 19.8 28.3 232 139 185
tan bd=10 - - 2.55 2.77 �0.261 �0.313 22.6 22.4 29.3 296 118 207
tan bd=25 - - 6.19 3.52 �0.311 �0.383 23.8 23.3 28.1 357 84 221
UCA - 1 12.65 11.95 0.403 0.489 27.4 26.6 36.1 228 86 157
UCA - 15 21.08 16.23 0.384 0.480 27.4 27.4 41.8 133 86 110

Combined indices
TWI with tan b3�3 - 15 7.44 3.45 0.425 0.527 30.0 29.7 44.4 125 77 101
TWI with tan bd=25 - 15 7.23 9.79 0.432 0.535 30.3 30.0 44.2 132 75 104
TWI with tan blocal - 15 6.84 9.82 0.430 0.533 30.2 30.0 44.3 125 76 100
TWI with tan blocal - 1 7.23 7.47 0.441 0.540 31.0 30.1 41.0 211 75 143
TWI with tan blocal 10 10 3.42 4.62 0.436 0.537 33.4 33.9 48.2 105 69 87
TCWI 10 10 3.56 4.54 0.440 0.541 33.6 33.9 48.3 106 69 88
TCSWI 10 10 3.16 2.88 0.404 0.473 31.0 30.9 41.9 179 66 122
best TCSWI 8 8 2.53 3.19 0.426 0.491 34.2 34.0 50.7 92 66 79

Logistic regression - - 3.24 3.71 0.436 0.568 33.5 33.1 49.2 105 69 87
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[32] The total size of saturated areas in the Brugga basin
is 2.6 km2, which is 6.6% of the basin area (excluding areas
with settlements or other areas that are heavily disturbed by
construction) (Figure 4a). Saturated areas occur in narrow
strips in the riparian zone along the main rivers (compare
Figure 1) and along narrow and steep valleys of tributary
creeks, where horizons of springs or diffuse zones of
emerging subsurface flow are located at the toe of the
hillslopes adjacent to the channel. Saturated areas of larger
extent were found in cirques or similar hollow structures of
Pleistocene origin and in other hollows with converging
morphology. The cirques are often characterized by a
roughly bowl-shaped morphology with a low-lying, flat
central part where saturated areas occur as bogs.
[33] In line with these field observations, most saturated

areas (66.6% of the total saturated area) were found in the
hollow/channel landscape unit, i.e., in locations with an
analytically derived topographic convergence (Figure 5;
compare with Figure 2a). Field observations that explain
the occurrence of the remaining saturated areas in planes or
on ridges are as follows: (1) Saturated areas were found
below springs on the steep and locally planar headwalls of
the cirques mentioned above. (2) The saturated areas are
located close to the watershed divide, only a few meters in
altitude below the top of the mountain ridges where they
were again related to the occurrence of springs. (3) Satu-
rated areas of larger spatial extent were most often found in
the southwestern part of the Brugga basin. In this area, the
crystalline bedrock is widely covered by moraine deposits
(see Figure 2b) that have denser soils with lower hydraulic
conductivity. This leads to a higher potential for surface
saturation.
[34] The distribution of saturated areas among the differ-

ent soil units of the Brugga basin showed that the 20%
fraction of saturated areas is indeed comparatively large for
the moraine unit (Figure 6). A similar coverage with
saturated areas was found for the Holocene deposits in the
valley bottoms, whereas practically no saturated areas were
found in units with a boulder layer (Figure 6). The extent of
saturated areas in the different elevation zones tends to
increase with elevation up to a maximum (about 8%) at an
elevation of about 900–1100 m. For higher elevations, the

fraction of saturated areas remains above the basin average
(Figure 7).
[35] After transformation to the 50� 50m2 grid, the pattern

of saturated areas appeared more fragmented (Figure 4b).
This is also expressed in terms of a smaller patch size and
a more regular patch shape for 50 � 50 m2 as compared
to the 10� 10 m2 grid (see MPS andMSI in Table 3). For the
narrow bands of saturated areas in the valley bottoms,
the fraction of area in the larger grid cells was often not
sufficient to classify a 50 � 50 m2 cell as saturated area.

4.2. Performance of Terrain Indices

[36] The radiation index (RAD) was found to result in the
poorest representation of saturated area spatial patterns

Figure 4. Pattern of mapped saturated areas in the Brugga basin: (a) original mapping and
(b) transformation to the 50 � 50 m2 grid.

Figure 5. Fraction of area of landscape units on the total
area of the Brugga basin and fraction of observed and
modeled saturated areas (SA) on the area of the landscape
units (model with best TCSWI terrain index).
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(Figure 8b and Table 3). Large patches with the lowest
annual radiation input (minimum 529 kWh m2 a�1) are
mainly located on the lower parts of steep north facing
slopes. RAD performed even worse than the random pattern
RANDOM. For the pattern of RAD with a clumping of
patches in some parts of the study area, the distances
between observed and modeled saturated cells (kdist) were
larger on average than for the random pattern being uni-
formly distributed in space.
[37] The mean surface curvature (CURV) resulted in a

pattern of the most pronounced concavity of the landscape
that highlights the bottoms of narrow, deeply incised
valleys, mainly in the lower part of the main valley and in
its contributing creeks (Figure 8c). These parts frequently
correspond to the location of saturated areas. The CURV
pattern, however, did not include saturated areas in the
valley bottoms of broader, more open valley segments,
particularly those in the southwestern part of the basin.
Here the most pronounced concavity was found at the rise
of the steep hillslopes instead of close to the channel, which
is surrounded by comparatively flat terrain. The perfor-
mance of curvature in quantitative terms was considerably
better than was RAD, as it was almost in the range of the
performance of the more suitable slope indices (see below
and Table 3).
[38] The three different slope indices resulted in markedly

different patterns of saturated areas. The worst performance
in comparison to the observations was found for tan b3�3

(Figure 8d and Table 3). The pattern of minimum slope
values of tan b3�3 is dominated by cells close to the
watershed divide and in the uppermost parts of the gently
undulating highland area in the southwestern Brugga basin.
The occurrence of mapped saturated areas in these parts is
comparatively low. Only a small number of cells with the

lowest slope gradients for the tan b3�3 index are attributed
to the valley bottoms. This was in contrast to the pattern of
the tan blocal index that showed broader patches of saturated
areas in the valley bottoms at the expense of areas in more
elevated parts of the basin (Figure 8e). The differences are
directly due to the calculation methods of both indices. For
cells located in the flat valley bottom close to its margins,
the adjacent hillslope cells with higher elevation are con-
sidered for slope calculation by tan b3�3. In the case of tan
blocal, in contrast, only the adjacent downslope cells in the
valley bottom with a comparatively small difference in
elevation are considered. Thus tan blocal results in smaller
slope values than tan b3�3. A better performance was
achieved for the tan blocal slope method according to all
criteria (Table 3).
[39] The tendency described as the difference between

tan b3�3 and tan blocal was amplified when looking at the
tan bd indices. The resulting pattern emphasizes even more
the main valley bottoms and adjacent hillslope cells
(Figure 8f). The index tan bd=25 performed better than
both tan bd=10 and tan b3�3 in terms of the krank and kmatch
criteria, but equally well or worse in terms of the fuzzy
and the distance criteria (Table 3). The first group of
criteria tends to give a higher weight to representing the
saturated areas in the main valley bottoms and hollows of
the study area, whereas the second group stresses more the
ability of the index to represent the spatially scattered
distribution of saturated areas.
[40] Using the upslope contributing area as terrain index,

the pattern of highest index values was closely related to the
channel flow lines in the main valleys and in the major
contributing valleys. For the index algorithm using h = 15
(corresponding to the single flow direction algorithm) the
pattern was primarily formed by one single line of cells in

Figure 6. Fraction of soil units on the total area of the
Brugga basin and fraction of observed and modeled
saturated areas (SA) on the area of the soil units (model
with best TCSWI terrain index).

Figure 7. Fraction of elevation zones (100 m contour line
intervals) on the total area of the Brugga basin and fraction
of observed and modeled saturated areas (SA) on the area of
the elevation zones (model with best TCSWI terrain index).
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the lowest channel cells of the valleys (Figure 8g). The
principal difference in the multiple flow direction algorithm
(h = 1) (Figure 8h) was that for the latter, broader areas of
saturated cells were generated in the valley bottoms because
accumulated area was redistributed among several down-
slope cells. To compensate, the pattern of saturated cells for
h = 15 extended further into locations of higher elevation in
the channel headwaters. For intermediate values of h, mixed
spatial patterns between these two extreme patterns were
obtained. In accordance with the observation that mapped

saturated cells are characterized by rather long but narrow
strips in the valley bottoms and often located in headwater
areas, most performance criteria showed better results for
algorithms that calculate the upslope index with stronger
flow convergence approaching the single flow direction
algorithm (Table 3). Independent from the actual value of
h, the upslope contributing area index outperformed all the
other simple terrain indices. More than 41% of the observed
saturated areas were explained in terms of the fuzzy spatial
coincidence (kfuzzy).

Figure 8. Spatial patterns of (a) observed and (b-m) modeled saturated areas with various terrain
indices.
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[41] For the example of the single flow direction algo-
rithm (h = 15), the combination of slope and contributing
area in the form of the TOPMODEL wetness index, TWI,
performed better than any of the simple indices. Different
slope calculation methods used within TWI resulted in only
minor differences (Table 3). The main difference between
the pattern of saturated cells for any of the TWI indices
relative to the UCA index was that in the first case,
saturated cells along steep channel segments of tributary
creeks were removed (Figure 8i). This was confirmed by the
field mapping, where often no saturated areas could be
found adjacent to the creeks connecting the hilly upland
areas with the valley bottoms over the very steep side slopes
of the main valleys. An additional effect in this respect was
obtained by introducing the channel initiation threshold
(CIT). As the maximum upslope area of each cell is limited
by CIT, the slope value gains in relative influence within the
combined TWI. As a result, more cells along steep channel
reaches were removed from the pattern of saturated cells.
Instead, additional saturated cells were generated in more
elevated areas of the headwaters of tributary valleys, and
also partly at the margins of the main valley bottoms
(Figure 8j). For simulations of TWI with tan b as slope value
and with variations of CIT in the range 0 to 250,000 m2 and
for different degrees of flow convergence by varying h in
the range 1 to 15, an optimal pattern of saturated cells
according to kfuzzy was obtained for CIT = 100,000 m2 and
h = 10 (Figures 9 and 8j). For this parameter combination,
the other performance criteria were also close to an opti-
mum value. For CIT values that were too small, too many
cells at steeper locations were not included in the pattern of
saturated cells. Smaller values of h produced less pro-
nounced converging flow pathways and, as discussed for
UCA, patches of saturated areas in the valley bottoms that
were too broad.
[42] The modification of TWI with consideration of the

climatic water balance C resulted in a small improvement of
the spatial pattern of saturated areas (TCWI in Table 3),
because more saturated cells were predicted in higher rather
than in lower parts of the watershed. The differences
compared to the index without an elevation gradient were,

however, less important than the effect of different algo-
rithms in terms of the parameters h and CIT. Testing a more
sophisticated cell-based assessment of the climatic water
balance which accounts for the influence of land use and
radiation input on evapotranspiration did not further im-
prove the simulated pattern (not shown).
[43] Using the TCWI index with the transmissivity T for

the five different soil units given in Table 2 in the form of
the climate-soil-topographic index TCSWI resulted in a de-
crease in performance when compared to the observed
saturated pattern (Table 3). However, as the T values were
only rough estimates, batch simulations were performed to
obtain optimum values. T was varied in a range of two
orders of magnitude above and below the estimated values
for each soil unit. Additionally, h and CIT also varied within
the ranges mentioned above. The results showed that one
condition for an improved spatial pattern was that no
saturated cells occurred in soil units 1 and 2, which was
achieved for T > 1 � 102 m3 d�1 in units 1 and 2. The
presence of a very coarse, rapidly draining surface material
prevented the formation of surface-saturated areas as cor-
roborated by the field survey (Figure 7). An optimum was
reached if both T3 and T4 were set to 1 � 101 m3 d�1 while
at the same time setting T5 = 4 � 101 m3 d�1 (Tables 2
and 3). The introduction of the soil information slightly
shifted the values of the optimized parameters h and CIT to
8 and 80,000 m2, respectively.
[44] The main difference between TCSWI and TCWI was

that for TCSWI the number of saturated cells in the channel
part of the valley bottoms with highly permeable sedimen-
tary deposits was reduced. For TCSWI, the linear pattern
was divided into individual segments in some locations
(Figure 8k). These changes came closer to the observed
pattern, as quantified by the values of MPS and MSI, where
patches in the valley bottoms are highly noncontiguous
(Figure 4b). To compensate, and in accordance with the
observed pattern, additional saturated cells in TCSWI were
generated in zones with moraine or drift material, primarily
at the margins of converging zones in valley or hollow
structures. If patches of saturated cells already existed for
TCWI in the upper parts of the basin, then they were
extended for TCSWI toward the watershed divide.
[45] The optimum version of a terrain index found in this

study (best TCSWI in Table 3) explained 34.2% of the
observed saturated area. Including the coincidence of
mapped and modeled areas within a 50 m tolerance radius
with lower weights for distant cells, the explained ratio is
50.7%. The cell-based rank correlation coefficient between
index values and the fraction of saturated areas is 0.43. It is
slightly higher (0.49) when averaged over larger areas (i.e.,
200 � 200 m2 cells). For the observed saturated areas, the
mean distance to the closest modeled cell is 92 m, which is
larger than the distance from each modeled cell to the
closest observed saturated area (66 m). This difference
between both kdist criteria indicates that the observed pattern
is more scattered in space than the modeled pattern. Ac-
cordingly, the mean size of saturated patches was over-
simulated by a factor of about 2.5, with a more irregular
shape than the observed size at the 50 m grid resolution
(MPS and MSI in Table 3).
[46] For the residual patterns, allowing for a tolerance

distance of 50 m due to effects of resolution, grid discreti-

Figure 9. Response surface of the performance criteria
kfuzzy for the TOPMODEL wetness index TWI calculated
with varying channel initiation threshold CIT and Holmgren
factor h.
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zation, and uncertainties of location, only 9% of all modeled
saturated cells with TCSWI were at a larger distance relative
to any observed saturated area (Figure 10a). These residuals
tend to be located close to urban or disturbed areas
particularly in the northern part of the basin (compare with
Figure 1). Thus one explanation for the deviations is human
impact, e.g., by drainage of wet zones. From the point of
view of the observed pattern, 33% of mapped saturated
areas were at a distance of more than 50 m to the next
modeled saturated cell (Figure 10b). The pattern of residuals
is composed of small patches scattered throughout the entire
study area. In general, they tend to occur in elevated parts of
the basin, which is also shown by the underestimation of the
fraction of saturated areas on different elevation zones
(Figure 7). A large number of errors were found in zones
located within a short distance downslope of the watershed
divide, especially in the southern and eastern parts of
the basin. These residual patches are often close to the
location of faults and fractures in the crystalline bedrock
(Figure 10b). The simulated pattern overestimated the
fraction of saturated areas in the hollow/channel landscape
unit at the expense of those in plane or ridge positions
(Figure 5). For the soil units, the fraction of saturated areas
was overestimated in moraine material and Holocene depos-
its, while the saturated area fraction in the periglacial drift
material, which has a large spatial extent in the study area,
was underestimated (Figure 6).

[47] The results of the logistic regression indicated that,
on average, the probability for a cell to belong to the
saturated areas almost doubled when TWI increased by 1
(Table 4). Cells close to tectonic faults were twice as likely
to belong to the saturated areas as those more distant from
faults. Saturated areas were more than twice as likely in
areas with poorly conductive soils as they were in those
with higher conductivities. Location in a topographic de-
pression increased the probability by about 60%. The
predicted pattern of saturated areas, given by the cells with
highest probability of saturation, was similar to the pattern
of the best TCSWI version (Figure 8m). The quantitative
performance criteria were in general slightly worse than the
values of the best TCSWI, but about equal to the other
combined terrain indices (Table 3). One notable exception
is krank,200, which had its optimum value among all analyzed
indices for the pattern derived from the logistic regression.
This indicates that at the coarser scale of 200 � 200 m2,
areas of high probability of soil saturation tended to
coincide more frequently with a high fraction of observed
saturated areas than for the other index patterns. Presum-
ably, the reason for this is that logistic regression accounts
for additional information on terrain characteristics that
favor soil saturation in the neighborhood of each grid cell
(as done by the channel/hollow landscape unit classification
and by the location close to a bedrock fault or fracture). This
larger radius of consideration of terrain characteristics

Table 4. Results of Logistic Regressiona

Independent Variable Constant b0 TWI Tectonicsb Landscape Unitc Soild

Parameter estimate bi �8.67 0.63 0.76 0.49 0.85
Odds ratioe 1.87

(1.78–1.97)
2.13

(1.79–2.53)
1.63

(1.39–1.93)
2.34

(1.90–2.88)

aDependent variable y (y = 0: nonsaturated, n = 14460; y = 1: saturated, n = 1012).
bValue is 1 for cells closer than 100 m to fault or fractures, value is 0 otherwise.
cValue is 1 for cells in hollow/channel unit, value is 0 otherwise.
dValue is 1 for soils with low transmissivity (units 3 and 4 in Table 2), value is 0 for more conductive soils (units 1, 2, and 5 in Table 2).
eFor unit change; 95% confidence interval is in parentheses.

Figure 10. Distance (a) from modeled saturated cells (with best TCSWI terrain index) to next mapped
saturated areas and (b) from mapped saturated to next modeled saturated cell. Residual patterns exceeding
a tolerance distance of 50 m are indicated in black. Figure 10b includes the pattern of faults and fractures
in the crystalline bedrock.
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improved the prediction of zones with high coverage of
saturated areas at the corresponding larger spatial scale, as
analyzed by krank,200.

4.3. Evaluation for the Zastler Basin

[48] Field mapping in the neighboring Zastler basin
(18.4 km2) resulted in a saturated area fraction of 6.2% of
the basin total. This is close to the fractional area observed
in the Brugga basin (6.6%). The main features of the spatial
pattern, such as patch size and shape, were also similar to
those of the Brugga basin (Figure 11a and MPS and MSI in
Table 5). The various terrain indices tested in the Brugga
basin were also applied in the Zastler basin to assess the
transferability of the approach to another area with similar
physiographic characteristics.
[49] The upslope contributing area index (UCA), was

the best primary index to explain the observed saturated
patterns in the Zastler basin (Table 5). Similar to the
Brugga basin, the basic single-flow and multiple-flow
algorithms for the calculation of TWI performed less
successfully than a modified TWI with adjusted parameters
h and CIT. For the best parameter combination derived for
TWI in the Brugga basin (h = 10, CIT = 100,000 m2), the
resulting pattern in the Zastler basin matched the observa-
tions with similar performance. Repeating the optimization

for the Zastler by varying h and CIT led to a lower value
of CIT = 60,000 m2 while h was also found to be 10 at the
optimum. This optimized version produced some saturated
cells both in hollows of higher elevation and in the valley
bottoms that were closer to the observations. The perform-
ance of the optimized index was slightly better than in the
Brugga basin. The best combined index including climate
and soil influence which was found for the Brugga basin
(best TC1SWI) resulted in a nearly identical performance in
the Zastler (Table 5 and Figure 11b). The general pattern
of errors when comparing the observations and simulations
was similar to that described for the Brugga basin. In
general, the performance of terrain indices in the validation
basin did not differ significantly from that in the
Brugga basin, neither what concerns absolute values of
performance, nor in terms of the ranking of terrain index
suitability.

5. Discussion

5.1. Interpretation and Suitability of the
Performance Criteria

[50] The set of performance criteria used in this study was
found to provide valuable quantitative measures for evalu-
ating the performance of modeled relative to observed

Table 5. Performance of Terrain Indices to Represent the Observed Pattern of Saturated Areas in the Zastler Basin

Criteria

CIT, ha h MPS, ha MSI krank,50 krank,200

kmatch,10,
%

kmatch,50,
%

kfuzzy,
%

kdist,o,
m

kdist,m,
m

kdist,mean,
m

Perfect fit value - - - - �1 or 1 �1 or 1 100 100 100 0 0 0
Worst case value - - - - 0 0 0 0 0 1 1 1
Observed patterns

O10 (10 m grid) - - 1.15 3.02 - - - - - - - -
O50 (50 m grid) - - 1.36 2.12 - - - - - - - -

Simple indices
UCA - 1 9.06 6.95 0.356 0.405 27.5 28.0 38.3 212 105 159

Combined indices
TWI with tan blocal - 1 7.77 9.08 0.420 0.499 32.9 34.0 45.7 137 86 112
TWI with tan blocal - 15 9.06 10.73 0.416 0.503 29.5 31.5 43.4 138 81 110
TWI with tan blocal 10 10 3.63 3.50 0.423 0.511 35.0 37.0 50.2 96 77 87
TWI with tan blocal 6 10 2.86 2.80 0.426 0.514 37.0 39.3 52.2 97 69 83
best TCSWI (Brugga) 8 8 3.20 3.51 0.429 0.517 35.5 37.9 50.6 99 74 87

Figure 11. (a) Observed and (b) modeled saturated areas in the Zastler basin (using the best index
version, TCSWI, as derived in the Brugga basin).
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spatial patterns. The criteria gave objective advice on the
ranking of different indices according to their predictive
power, which corresponded to the qualitative reasoning
obtained by visual inspection. Strong correlations between
several individual criteria were found (Table 6). kmatch,10
and kmatch,50, as well as krank,50 and krank,200, resulted in a
nearly identical ranking of index performance. This indi-
cates that the spatial resolution of the validation data set
(saturated patterns on a 10, 50, or 200 m grid), although
appearing to differ with regard to the complexity of shape of
saturated patches (Figures 4a and 4b and MSI in Table 3),
had no influence on the selection of an optimum terrain
index. An exception was found for the pattern derived from
logistic regression, which was rated as the best pattern in
terms of krank,200, contrary to krank,50. This difference
between both criteria indicates that, depending on the scale
of evaluation, individual terrain characteristics may have a
different value for explaining the location of saturated areas
(see section 4). Using the same type of performance criteria
but at different spatial resolutions (such as the pairs kmatch,10
and kmatch,50 or krank,50 and krank,200) can thus give valuable
information on scaling issues.
[51] A high correlation coefficient was also found be-

tween kmatch,10 or kmatch,50 and kfuzzy (Table 6). Nevertheless,
some important differences in the ranking of terrain indices
existed between these criteria. Consider, for instance, the
slope indices tan blocal and tan bd=25. According to kmatch,
tan bd=25 performs better than tan blocal, contrary to what
might be expected from visual inspection. In the case of tan
bd=25, broad patches of saturated areas in valley bottoms
captured the mostly narrow mapped saturated areas in these
parts. In contrary, the probability of missing the exact
location of these mapped areas due to uncertainties of data
and due to resolution effects was higher for the finer pattern
of tan blocal. In terms of criterion kfuzzy, these accidental
discrepancies between observed and modeled patterns are
taken into account by the fuzzy approach whereas kmatch
only considers the direct coincidence. Thus tan blocal per-
formed slightly better in terms of kfuzzy than tan bd=25.
Similarly, kmatch, krank,50, and krank,200 tended to have a
higher performance for the more clumped than for the finer
patterns (see TWI with h = 1 versus TWI with h = 15 as a
further example). In other words, instead of using krank or
kmatch, the simulated pattern is better evaluated by kfuzzy
because of the widely scattered and fine shape of the
observed pattern.
[52] A similar reasoning applies to the distance criteria,

where for kdist,o, contrary to kdist,m, high performance

values can only be obtained for those indices that also
have a scattered pattern with a number of saturated cells
away from the main valleys. The three distance criteria
kdist provide a method to quantify in an illustrative way the
location of observed and modeled patterns relative to each
other. The combined criterion kdist,mean is useful for eval-
uating both aspects of pattern coincidence, i.e., from the
perspective of both observed and simulated patterns.
However, one needs to be cautious when interpreting the
index performance. It is important to note that the best
results of all simple terrain indices in terms of kdist,o were
obtained for the random index (Table 3), which has a
spatial pattern that provides a comparatively near-distance
modeled cell for each observed saturated cell. One might
risk misinterpreting the increase in quantitative perform-
ance according to these criteria as a real increase of the
physically based predictive power of a certain index to
explain the observed patterns. The main problem with the
distance criteria is that an index (e.g., as the random
index) may produce saturated cells that are closer to the
observations than for another index, but that are still too
far away to give a physically meaningful interpretation of
the observations. A better criterion in this respect is the
fuzzy coincidence criteria kfuzzy, which sets a maximum
distance up to which a reasonable relation between obser-
vations and model results can still be assumed considering
the existing uncertainties.

5.2. Factors Influencing the Location of Saturated
Areas and Their Incorporation in Terrain Indices

[53] The upslope contributing area was found to be the
most important single factor explaining the spatial pattern
of saturated areas in the Brugga basin. This result
corresponds to findings of Western et al. [1999] for the
explanation of soil moisture patterns under wet conditions
in the Tarrawarra catchment. The importance of the
upslope contributing area is an indication that soil satu-
ration does mainly depend on the amount of lateral flow
toward a certain location. The upslope area was found to
be superior to topographic indices that considered the
local and/or downslope process control on lateral water
transport, i.e., slope gradient (slope indices) and flow
convergence (curvature index). Because of high precipi-
tation volumes and comparatively low evaporation, the
Brugga basin usually is in a wet state throughout the
year, which favors the dominance of nonlocal control.
This process dominance is reflected in the observed
pattern of saturated areas and, consequently, by the better
performance of terrain indices representing nonlocal con-
trol. Combining local and nonlocal topographic aspects
by the TOPMODEL wetness index resulted in a distinct,
but quantitatively small, improvement of the predicted
pattern. The shape of this pattern, however, was domi-
nated by the UCA index pattern, which is a consequence
of the relative weight attributed to each component in the
combined index. For the topographic wetness index, this
weighting is based on a theoretical derivation using a
number of assumptions [Beven and Kirkby, 1979], but of
course an alternative combination might perform better.
However, using UCA and slope as separate variables in
the logistic regression did not give a clue for such an
alternative weighting.

Table 6. Spearman’s Rank Correlation Coefficient Between

the Performance Criteria of the 19 Terrain Indices Compared in

Table 3

krank,50 krank,200 kmatch,10 kmatch,50 kfuzzy kdist,o kdist,m kdist,mean

krank,50 1.00 0.98 0.87 0.84 0.78 �0.77 �0.80 �0.81
krank,200 1.00 0.83 0.80 0.80 �0.79 �0.75 �0.82
kmatch,10 1.00 0.99 0.94 �0.86 �0.95 �0.90
kmatch,50 1.00 0.93 �0.86 �0.94 �0.90
kfuzzy 1.00 �0.94 �0.86 �0.97
kdist,o 1.00 0.80 0.99
kdist,m 1.00 0.84
kdist,mean 1.00
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[54] The performance of the various topography-based
terrain indices was sensitive to the algorithms and their
parameterization used for deriving slope and flow accu-
mulation from the gridded elevation model: (1) The
generally better performance of tan blocal in comparison
to tan b3�3 is physically plausible as local moisture
conditions are largely controlled by drainage and thus
downslope topography. Using the surface slope to the
adjacent downslope cell (tan blocal) outperformed the
downslope index, tan bd. The primary reason might be
that in this catchment saturated areas often occur in locally
flat patches within a generally steep topography rather than
in extended plane valley bottoms with a continuous
groundwater body. (2) Using values of 8–10 for the
Holmgren factor h in the upslope area calculations pro-
vided the most realistic patterns of saturated areas. This is
in line with recommendations from other studies to use an
intermediate approach between the single- and multiple-
flow-direction algorithms to adequately represent the real
flow redistribution in view of the limitations induced by
the regular grid data [e.g., Holmgren, 1994; Tarboton,
1997]. In contrast to Holmgren [1994], who recommended
h values of 4–6 based on a theoretical analysis for a 50 �
50 m2 DEM, our optimized values are slightly higher,
resulting in stronger converging flow patterns, which can
be attributed to the frequently linear shape of observed
saturated areas. (3) The introduction of the channel initi-
ation threshold (CIT) resulted in considerable improvement
of the saturated area pattern. This is physically reasonable,
as subsurface flow that enters the channel network usually
does not influence soil moisture status at downslope
locations. The use of some threshold area is especially
important in large-scale applications. The continuous
accumulation of upslope contributing area toward the basin
outlet would imply that zones along the main river are
increasingly more prone to saturation. In the Brugga basin,
and other catchments, this is often not the case. The
appropriate value of the threshold area CIT might vary
depending on catchment characteristics such as geology or
climate. Quinn et al. [1995] suggested a value of
22,500 m2 based on an analysis of the distribution func-
tions of TWI for different CIT values. Values for CIT of
60,000–100,000 m2 provided the best agreement with
observed patterns of saturated areas in our study. These
values also happened to provide a channel network that
agreed reasonably well with the official topographic map
(scale 1:50,000).
[55] Only small improvements for the prediction of

saturated areas were achieved by including nontopo-
graphic factors. A slight improvement was obtained by
using an elevation gradient for the water balance (TCWI).
This, however, did not substantially remove the underes-
timation of saturated areas in elevated parts of the
catchment (Figure 7). One may argue that important
climatic aspects influencing water balance variability are
not captured (e.g., precipitation patterns influenced by
topography, snow redistribution by wind drift). Addition-
ally, the simple radiation index (RAD) shows that zones
of minimum radiation input, which could be assumed to
be wettest, often coincide with steep slopes with compar-
atively permeable soils that preclude the formation of
saturated areas (Figures 8b and 2b). The generally wet

conditions caused by the positive water balance of the
Brugga basin might be another reason why the local
control by evaporation might be less important for the
soil moisture status. This clearly differs from the results of
Western et al. [1999] or Gómez-Plaza et al. [2001], where
for dry environments, or those with a clear dry season, a
better performance of terrain indices that accounted for
insolation was shown.
[56] The logistic regression indicated that the occurrence

of saturated areas tended to be related to soils of low
transmissivity. However, an improvement of the simulated
pattern by a combined soil-topographic index was achieved
only after an optimization of the transmissivity values. This
situation will be typical for most basin-scale applications,
where the available soil information in terms of the detail of
differentiation into different soil types, spatial resolution
and parameter values is limited and usually less accurate
than other data, especially topographic data. In this case, a
priori soil information fails to improve the prediction of
saturated areas. A limited value of using physical soil
properties based on the spatial distribution of soil types to
improve the simulation of patterns of surface soil moisture
or surface runoff generation was also reported by Vertessy
and Elsenbeer [1999], Houser et al. [2001], and Western
and Grayson [2001].
[57] The intersection of fractures and faults in the crys-

talline bedrock with the terrain surface can lead to the
emergence of deep groundwater from the fissured aquifer
in springs [Uhlenbrook et al., 2002] and thus saturated
areas. Many of the small patches of residuals throughout the
study area (Figure 10b) were indeed found in the field to be
caused by springs. Additionally, denser patches of residuals
that occurred in zones a short distance downslope of the
watershed divide (Figure 10b) may be related to springs at
the boundary between the unconsolidated material and the
underlying bedrock that emerges at the transition from the
hilly uplands to the steep slopes of the main valleys.
Ambroise et al. [1996] and Freer et al. [1997] recognized
similar influence of preferential subsurface flow paths or of
bedrock topography on saturated area formation. As these
springs are not necessarily related to a distinct convergence
of the terrain surface, this may also partly explain the
location of saturated areas in landscape units classified as
plane or ridge that were underestimated by the terrain
indices used here (Figure 5).
[58] There is no direct way to compare the index perform-

ance with previous findings due to the lack of studies that
similarly evaluated a binary spatial pattern against observa-
tions for large areas. Assessing the performance of mainly
topography-based terrain indices for explaining observed
soil moisture patterns in small basins, the explained vari-
ance in a number of studies in different environments was
usually less than 50% (see overview by Western et al.
[1999]). The best value was obtained by Western et al.
[1999], where a combined index of the TOPMODEL
wetness index and potential solar radiation explained up
to 61% of the spatial variation of soil moisture during wet
periods in a 10.5 ha test site. The results of our study, with
the best terrain index explaining about 50% of the observed
pattern of saturated areas in terms of the fuzzy performance
criteria, is in the range of previous studies. A number of
factors cause the large percentage of unexplained locations
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of saturated areas and limit the predictive capability of
terrain indices.
[59] 1. Terrain indices do not incorporate all processes

that control soil saturation. The most relevant factor for the
study area that was not included in a terrain index as we did
not find a manageable way to do so, was geology, especially
fractures and stratum boundaries.
[60] 2. An appropriate way to incorporate influencing

factors into a terrain index is often not known a priori. This
refers both to index algorithms and their parameter values
(as the relevance of CIT and h for upslope contributing area
calculations in our study), and to the relative weights
attributed to the individual factors within a combined index.
These features can be derived only by regression analysis or
optimization against observed patterns. Much broader ex-
perience from a large number of studies would be required
to devise rules concerning how to incorporate influencing
factors a priori for given basin characteristics.
[61] 3. The available information on influencing factors

beyond topography is not detailed enough to explain
additional organization of the saturated pattern. This will
be the case particularly for large-scale applications. The lack
of detailed information on soil relative to topography is
considered to be a major limitation on the accuracy of
simulated patterns at the basin scale. In contrast, land use,
another factor that may cause additional variability in
saturated patterns in particular at large scales, is usually
available in more detail, e.g., from remote sensing. In other
areas, correlations between land use and soil patterns may
help to expand the spatial soil information used in index
calculations.
[62] 4. Scale discrepancies between the resolution of the

modeling scale and the observation scale limit the maxi-
mum accuracy that can be expected of an index model. This
includes subgrid features that cannot be resolved by the
model resolution, as well as geometric discrepancies result-
ing from data discretization, e.g., to a regular grid. Small-
scale features, however, such as microtopography at the
10 m scale, are governing processes that are not relevant to
the prediction of saturated areas at the basin scale. Thus
with adequate measures such as the fuzzy criterion, this
scale effect can be minimized when evaluating simulated
versus observed patterns at the basin scale.
[63] 5. Uncertainty in the delineation of observed patterns

as well as in the exact position of data underlying the
modeled patterns can contribute to high unexplained spatial
variability of saturated areas. In contrast to most other
studies, the delineation of observed spatial patterns used
here was based on long-term mean wetness conditions.
Thus uncertainty of location due to the temporal variability
of the mapped pattern relative to the simulated pattern of a
static index is excluded. On the other hand, the methodol-
ogy includes uncertainty of pattern delineation due to the
qualitative character of pedological and geobotanical map-
ping indicators. Additionally, errors of digital elevation
models may limit model performance in hydrogeomorpho-
logical applications particularly at smaller scales [e.g.,
Endreny et al., 2000]. We assume 50 m as a reasonable
tolerance distance for these uncertainties of location for our
application.
[64] 6. Natural variability of landscape characteristics

adds a random component to the spatial pattern of saturated

areas that cannot be predicted using deterministic indices
and thus limits their predictive power.

6. Conclusions

[65] In this study, the use of qualitative botanical and
pedological observations was valuable to achieving a con-
sistent, time-integrated delineation of water saturated areas
throughout a mesoscale river basin. The resulting spatial
pattern allowed evaluation of the power of static terrain
indices to predict the spatial distribution of saturated areas at
the basin scale. Upslope contributing area was the most
important single factor to explain the observed pattern. The
combination with slope in the form of the well-known
topographic wetness index ln(a/tan b) improved the simu-
lated spatial pattern of saturated areas. We tested various
modifications of the wetness index to further improve the
results. While these partially resulted in a somewhat better
prediction of saturated areas, there seemed to be a limit to
what can be achieved with this type of approach.
[66] For computation of the upslope contributing area we

found that the selection of an appropriate algorithm for
calculating flow accumulation from the grid-based elevation
model is essential for improving the performance of the
simulated pattern. We recommend use of an intermediate
approach between a single- and multiple-flow-direction
algorithm and a threshold value to limit large accumulation
of contributing area along the stream network. The latter is
especially important when the wetness index approach is
transferred to a large scale.
[67] Factors other than topography were of less value to

the improvement of the explanatory power of combined
terrain indices. We argue that a main reason might be
limited data availability. In particular, the performance of
a combined soil-topography index is limited by the rather
approximate kind of soil information available at large
scales. A general limitation of the type of deterministic
index approach is the difficulty of quantitatively including
categorical attributes such as geological features like frac-
tures or strata boundaries. The results in our study area
indicated, however, that such features partly explain the
spatial pattern of saturated areas.
[68] There is no standard criterion for evaluating a

simulated spatial pattern in comparison to an observed
pattern such as the model efficiency for evaluating runoff
simulations. We proposed a number of evaluation criteria.
Obviously there is much redundancy in these criteria, but
they nevertheless provide different information about the
agreement of simulated and observed patterns. On the basis
of our results, we recommend using not only criteria that are
based on a cell-by-cell comparison but also measures that
examine the cell neighborhood.
[69] On the basis of the validation in an independent

catchment, we conclude that the best version of a combined
terrain index including topography, soil, and climate attrib-
utes is a reasonable approach to represent characteristic
features of the observed pattern of saturated areas in the
study area. Although missing smaller-scale detail and some
influencing factors, it is considered to be transferable to
other mountainous basins on crystalline bedrock in the
Black Forest region. The transferability to basins with
markedly different physiographic characteristics remains
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to be tested, in particular for less humid areas where land
use and evapotranspiration might play a more important
role. However, we suggest that the combination of topo-
graphic indices with other easily available spatial informa-
tion provides a simple approach to estimate the general
patterns of saturated areas.
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Gómez-Plaza, A., M. Martı́nez-Mena, J. Albaladejo, and V. M. Castillo
(2001), Factors regulating spatial distribution of soil water content in
small semiarid catchments, J. Hydrol., 253, 211–226.
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