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Abstract 
Usually the HBV model is calibrated by seeking one optimal parameter set 
that represents the catchment. From experience we know, however, that it is 
hardly possible to find an unique parameter set. This is because of errors in 
both the model structure and the observed variables and because of 
interactions between the different model parameters. Therefore, there may 
be many sets of parameters which give similar good results during a 
calibration period, but their predictions may differ when simulating runoff 
in the future. In this study a Monte Carlo procedure was used to assess the 
uncertainty of the parameter estimation and to describe differences in this 
uncertainty for the various parameters. A fuzzy measure of model goodness 
was introduced to allow combination of different objective functions. Only a 
few of the parameters were well-defined, whereas for most parameters good 
results could be obtained over large ranges. Tentatively an indication of the 
uncertainty in model predictions arising from the uncertainty in the 
parameterization was given by viewing the predictions of runoff during two 
periods. 

Introduction 
The reliability of hydrological catchment models is highly dependent on the calibration 
procedure, which is normally the search for one optimal parameter set. On the other 
hand, most models are overparameterized and the parameters can not be reliably 
estimated (Jakeman and Hornberger 1993), since different parameter sets spread 
throughout the parameter space can provide almost equally good fits (e.g. Duan et al. 
1992; Freer et al. 1996). Parameter uncertainty, i.e., the problem to find one unique set 
of parameters, increases with the number of model parameters and decreases with 
increasing information about the system. The information which is normally available 
for calibration and validation, i.e., time series of driving variables and discharge, does 
often not allow a decision which parameter set is the correct one (Sorooshian and Gupta 
1983; Hornberger et al. 1985). Errors in both model structure and measured data 
together with the more or less arbitrary choice of the objective function make the 
expectation that any one parameter set will be the true one unreasonable (Beven and 
Binley 1992). Sefe and Boughton (1982), for instance, tested ten objective functions 
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and concluded that parameter values varied with the type of objective function used for 
the optimization. Kuczera and Williams (1992) demonstrated that the parameter 
uncertainty increases when errors in the areal rainfall used in the calibration period are 
considered. It can be concluded that parameter uncertainty can arise from many aspects 
of the modelling. 

The HBV model (Bergström 1976) has been applied in numerous studies, e.g., to 
compute hydrological forecasts, for the computation of design floods or for climate 
change studies (Bergström 1992). The problem of parameter uncertainty within the 
model, however, has not yet been fully examined. 

A Monte Carlo procedure was used in this study to investigate the uncertainty in 
parameter values using the results of a large number of model runs with randomly 
generated parameter sets and studying for each parameter how good simulations of the 
measured runoff could be achieved at best with different parameter values. Often the 
degree of uncertainty in calibrated parameter values is studied by testing the sensitivity 
of model output to changes of one parameter while keeping all other parameters 
constant. The procedure used in this study had the advantage that any interaction 
between parameters was implicitly taken into account since varying parameter sets were 
used instead of varying individual parameters. 

Parameter uncertainty in the HBV model has been studied by Harlin and Kung 
(1992) using another Monte Carlo procedure described by Hornberger et al.(1986). 
They generated 1000 parameter sets choosing parameter values from uniform 
distributions with minimum and maximum values derived from eight model calibrations 
using different calibration methods and simulation periods. They divided the parameter 
sets into those which gave acceptable and unacceptable simulations respectively. 
Comparing the distributions of acceptable and unacceptable sets, they identified 
parameters to which the model output was sensitive by investigating how large the 
chance was to get acceptable simulations with a certain value for one parameter. In this 
study the question was put in the opposite way: How large is the interval for a certain 
parameter over which there is the possibility to obtain a good simulation of the 
measured runoff? 

Parameter uncertainty is, of course, important for internal states and flows 
simulated by the model, but one could argue that this is not a problem for the rainfall-
runoff simulations. If different parameter sets provide good fits one could just take one 
of the ‘good’ parameter sets. This argument implies the assumption that the simulated 
runoff using equally good parameter sets is similar. This does not always have to be true 
for the calibration period and it may be completely wrong when simulating runoff 
during periods with different weather conditions. Therefore, amongst other sources such 
as natural randomness, data errors and model structure uncertainty, parameter 
uncertainty may be a significant source of the combined modelling uncertainty (Beck 
1987; Melching et al. 1990). The uncertainty of the simulated discharge arising from 
the parameter uncertainty was addressed only briefly in this study. 
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Material and Methods 

The HBV Model 

The HBV model is a conceptual model of catchment hydrology which simulates 
discharge using rainfall, temperature and estimates of potential evaporation. The model 
consists of different routines representing snow by a degree-day method, soil water and 
evaporation, groundwater by three linear reservoir equations and channel routing by a 
triangular weighting function. Descriptions of the model can be found elsewhere (e.g. 
Bergström 1992, 1995; Harlin and Kung 1992) and in the appendix. 

The version of the model used in this study, HBV light (Seibert 1996) corresponds 
to the version described by Bergström (1992) with only two slight changes. Instead of 
using initial states the new version uses a warming-up period, i.e. the simulation period 
is preceded by a period during which rough estimates of the initial state values evolve 
into their correct values according to both atmospheric forcing and parameter values. In 
the original version, only integer values are allowed for the routing parameter MAXBAS. 
This limitation has been removed in the new version. 

Study Catchments 

Two catchments were used in this study, the Rivers Sävaån and Svartån, both located in 
central Sweden. Elevation differences are small and the predominant land use is forest 
(Seibert 1994), see Table 1. The lake percentage is higher in the River Svartån 
catchment and runoff is more damped (Seibert 1994). The highest specific runoff during 
the study period, for instance, was twice as high from the River Sävaån catchment as in 
the River Svartån catchment. In this study the HBV model was run on a daily time step 
using only one land use class and one elevation zone. The areal, corrected precipitation 
was calculated by Seibert (1994) from measurements at four and two stations 
respectively using the Thiessen polygon method and correction factors given by 
Eriksson (1983). Daily temperature was computed as the mean from two stations for 
both catchments. The monthly long-term mean potential evaporation was taken from 
Eriksson (1981). The simulation period was a ten year period from September 81 to 
August 91 preceded by a warming-up period of eight months. 

Monte Carlo Procedure 

For each parameter, ranges of possible values were set based on the range of calibrated 
values from other model applications (Bergström 1990; Braun and Renner 1992). After 
initial runs the ranges were extended for those parameters where the best simulations 
were close to minimum or maximum. 500,000 parameter sets were generated using 
random numbers from a uniform distribution within the given ranges for each parameter 
(Table 2). The model was run for each parameter set and the values of three different 
objective functions (Table 3) were computed. Only runs where the value of Reff 
exceeded 0.7 were used for further processing. 

Combination of Different Objective Functions by a Fuzzy Measure 

Different objective functions judge the goodness of a certain parameter set by different 
aspects, this means one parameter set can give a good fit according to the Reff -criteria 
but only a poor fit in terms of the VE criteria and vice versa. It is difficult to combine 
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the values of different objective functions as they are not directly comparable. 
Therefore, a fuzzy measure, which allowed the combination of different objective 
functions, was introduced in this study. Fuzzy logic allows the handling of the concept 
of partial truth value between completely true and completely false. A fuzzy measure 
varies between zero and one and describes the degree to which the statement ‘x is a 
member of Y’ or, in our case, ‘this parameter set is the best possible set’ is true. 
Membership functions were defined to transform the values of the objective functions 
into fuzzy measures (Eqs. (1a-c)) where the value one was assigned to the highest 
values obtained for Reff and LReff (Reff,max and LReff,max) respectively and to values of 0 for 
VE. 
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The fuzzy measure allows the three objective functions to be joined and to compute 
the degree of truth of the ‘best possible set’-statement, F, for each parameter set (Eq. 
(2)). 

F X X X X X X= ∩ ∩ =1 2 3 1 2min( , , )3  (2) 

Uncertainty of Model Parameters 

Plotting the values of model goodness against those of one parameter shows how well-
defined by calibration this parameter is. For a well-defined parameter the goodness that 
can be obtained decreases clearly as parameter values deviate from some optimal value. 
If, on the other hand, good simulations could be achieved using parameter values over a 
wide range, this parameter is not well-defined. Note that only the best fit for a certain 
parameter value is of interest, since every parameter value could, of course, result in 
poor simulations due to the values of the other parameters. Therefore it was the upper 
boundary of the scattered points from the Monte Carlo runs which was of interest 
(Fig. 1). For well-defined parameters this upper boundary shows a distinct peak whereas 
there is a plateau for less well-defined parameters. 

Uncertainty of Simulations 

A detailed analysis of the uncertainty of the simulated runoff caused by parameter 
uncertainty is beyond the scope of this paper. An indication of the uncertainty of the 
simulated discharge caused by parameter uncertainty was assessed by comparing the 
simulations for two periods during 1985 for the River Sävaån catchment. The first 
period included the highest discharge (10.9 mm d-1) which occurred during the 
calibration period, therefore, it may be suitable to indicate simulation uncertainty when 
modelling runoff larger than that which occurred in the calibration period. The other 
period (July 1 to July 15 1985) represented periods with very low runoff. 
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Results 

Parameter Uncertainty 

About one percent of all model runs gave fits with Reff values better than 0.7 and the 
highest values were 0.81 (Sävaån) and 0.86 (Svartån). For most of the best parameter 
sets the combination of the values for UZL, PERC and K1 caused the upper outflow of 
the upper box (K0) to be active only during extremely short periods or even not at all. In 
these cases, K0 could take any value and UZL any value larger than some threshold 
value without any influence on the simulations. Therefore, the uncertainty of these two 
parameters could not be analysed. 

For most parameters high Reff values could be obtained with values varying over 
wide ranges (Figs. 2 and 3). The parameters K2 and PERC were better defined by the 
LReff-criteria than by Reff, which was expected since LReff is more sensitive to errors 
during low flow conditions. For the soil routine parameters, which are also important 
during low flow conditions, the LReff-criteria was only a little more sensitive than the 
Reff-criteria. The best parameter values according to the two criteria did not always 
agree (Fig. 4). 

Good simulations according to the VE-criteria alone were obtained with parameter 
values over almost the entire designated range for all parameters. For the F-criteria, the 
VE-criteria was a supplement to the other two criteria since some simulations with high 
Reff values were bad according to the VE-criteria. The fuzzy measure, F, is close to unity 
if a good fit according to one criteria is also a good fit according to the other two 
criteria. The highest values of F were 0.87 (Sävaån) and 0.70 (Svartån), which 
demonstrated that model fits were judged differently by the different criteria. The Reff-
values of the simulations with the highest F values were about 0.03 less than the 
maximum values (~0.04 for LReff). The parameters PERC, K2 and SFCF were 
significantly better defined by using the F-criteria compared to the Reff-criteria (Fig. 3). 

Simulation Uncertainty 

The shape of the spring flood hydrographs simulated using the parameter sets that gave 
fits with a goodness of not more than 0.02 less than the maximal value of Reff varied 
considerable (Fig. 5). The range of simulated runoff maxima using parameter sets which 
had given Reff -values only slightly smaller than the maximum of Reff during the entire 
period was large (Fig. 6). The relative variations were much larger for the mean runoff 
during a 15-day period during July 1985 when runoff was very low (Fig. 7). The 
variation between simulations with the best parameter sets according to the F-criteria 
was smaller and the results were closer to the observed values (maximal runoff 10.9 mm 
d-1, runoff volume during 15 days 1.6 mm). 

Discussion and Conclusions 
Only few of the model parameters were found to be well-defined, while for the other 
parameters good fits were obtained over broad ranges. The only parameter that could be 
identified clearly in both catchments was the threshold temperature, TT. The parameters 
CFR, LP, PERC and K2 were found to provide good fits according to the Reff-criteria 
over very wide ranges. The combination of different objective functions in the F-criteria 
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confined these ranges for PERC and K2. For the remaining parameters the range of good 
model performance varied between 25 and 75 per cent of the entire tested range (Fig. 3). 
These results may look somewhat different from those of Harlin and Kung (1992), who 
found model fits to be, for instance, insensitive to changes in TT but sensitive to 
changes in SFCF. The explanation for this apparent difference is the way they 
determined the minimum and maximum values of the tested parameter values. They 
derived these values from eight model calibrations using different calibration methods 
and simulation periods. Therefore, the ranges were smaller for well-defined than for 
badly-defined parameters because their optimized values vary less with calibration 
method and simulation period (e.g. the range of TT was less than 1 °C). 

If good simulations of the measured runoff could be obtained with different values 
for one parameter this does not necessarily mean that the simulations are not sensitive to 
changes in this parameter, but that changes are compensated for by other parameters. 
Simulations of the HBV model are very sensitive to changes of CFMAX or FC, for 
instance, when they are changed alone. It is therefore important to distinguish between 
an insensitive parameter which in practice can be set to some constant value (as is done 
in most HBV applications with CWH and CFR) and an uncertain parameter. 

The intervals for K1 and K2 overlapped and thus sets with K1 larger than K2 were 
tested. This combination is often avoided in model application but has been used before 
(e.g. Braun and Renner 1992). Furthermore, there is no self-evident reason to reject this 
combination a priori. With different parameterizations of the response function the roles 
of the different outflows change. Larger values for PERC, for instance, cause an 
increased contribution of the lower box, which, consequently, becomes more important 
even during periods with high flow. However, there is hardly any objective justification 
that one outflow should or should not contribute during certain periods or at a certain 
magnitude. 

The HBV model is usually calibrated manually by trial and error (Bergström 1992). 
Therefore, the problem of subjectivity has to be considered when judging calibration 
results. Usually a user will start from parameter values that gave good results in a 
similar catchment and try to keep them within certain ranges during calibration. 
Bergström(1990), for instance, found regional variations for the calibrated values of FC 
with higher values in southern Sweden. The results of this study suggest that such 
regional variations may be partly due to what is expected by the modeller. He/she starts 
with one value and as very different values of FC can produce good fits, it is possible to 
keep this value by changing other parameters. With badly-defined parameters, 
automatic calibration methods will often lead to different parameter sets, depending on 
the optimization method and start values and it is up to the user to decide which set to 
use (e.g. Kite and Kouwen 1992). 

The combination of different objective functions through a fuzzy measure did partly 
help to decrease the parameter uncertainty. The simulations of two shorter periods 
during 1985 were closer to the observations for parameter sets with high F values than 
for those with high Reff values. The variations between the simulations using the best 
parameter sets according the F-criteria were smaller than those between the simulations 
using the parameter sets which had the highest Reff values. This suggested that the 
combination of different objective functions may be suitable to judge different 
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parameter sets which may perform more or less similarly well according to only one 
objective function. Furthermore, this result indicated that parameter sets with high Reff 
values alone may not predict runoff as well as parameter sets with somewhat lower Reff 
values but higher values for other objective functions.  

The three objective functions used in this study are those measures most widely 
used in hydrological modelling to assess model performance. However, using other 
objective functions may alter the results. One limitation of the objective functions used 
in this study is that they average over the simulation period. For instance, a simulation 
that fits well during spring but less well during autumn and a simulation where the 
situation is vice versa thus may get the same number. Therefore, parameter uncertainty 
may be reduced by computing the objective functions for different parts of the years 
separately. Another way to reduce parameter uncertainty may be the use of additional 
data in the model calibration such as, for instance, snow cover, extension of saturated 
areas or information derived from environmental tracer studies. This may allow the user 
to reject parameterizations that simulate runoff correctly but with inconsistent internal 
variables (e.g. Ambroise et al. 1995; Franks et al. 1997). Furthermore, modifications of 
model equations may help to decrease the parameter uncertainty (Gupta and Sorooshian 
1983). 

The uncertainty of the simulated runoff caused by parameter uncertainty has to be 
studied in more detail. However, the tentative results indicated that simulated runoff 
during a certain period may vary considerably for parameter sets which gave almost 
similar good fits (according to the Reff- or the F- criteria) during calibration. It should be 
noted that both periods were within the calibration period. Differences in the 
simulations are expected to be larger for periods outside the calibration period, 
especially when the hydrological conditions differ. 

Normally, after calibration the statement ‘this parameter set is the best possible set’ 
is assumed to be true for one parameter set and false for all other sets. The results of this 
study, however, suggest that it would be more reasonable to think of different parameter 
sets, each one to a certain degree being the best one and to estimate the uncertainty of 
model predictions such as, for instance, the uncertainty in the volume of a design flood 
arising from parameter uncertainty. Consequently, a prediction should be given as a 
range or probability distribution (Melching et al. 1990; Beven and Binley 1992; Freer et 
al. 1996) rather than as a single value. 
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Appendix: A Short Description of the HBV Model 
The model simulates daily discharge using daily rainfall, temperature and potential 
evaporation as input. Precipitation is simulated to be either snow or rain depending on 
whether the temperature is above or below a threshold temperature, TT (°C) (please 
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note that all parameters are in bold). All precipitation simulated to be snow, i.e. falling 
when the temperature is below TT, is multiplied by a snowfall correction factor, SFCF 
(-), which represents systematic errors in the snowfall measurements and the ‘missing’ 
evaporation from the snow pack in the model. Snow melt is calculated with the degree-
day method (Eq. (A1)). Meltwater and rainfall is retained within the snow pack until it 
exceeds a certain fraction, CWH (-), of the water equivalent of the snow. Liquid water 
within the snow pack refreezes according to a refreezing coefficient, CFR (-) (Eq. 
(A2)). 

melt T t= ⋅ −CFMAX TT( ( ) )  (A1) 

refreezing T t= ⋅ ⋅ −CFR CFMAX TT( ( ))  (A2) 

Rainfall and snow melt (P) are divided into water filling the soil box and groundwater 
recharge depending on the relation between water content of the soil box (SM (mm)) 
and its largest value (FC (mm)) (Eq. (A3)). Actual evaporation from the soil box equals 
the potential evaporation if SM/FC is above LP (-), while a linear reduction is used 
when SM/FC is below LP (Eq. (A4)).  
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Groundwater recharge is added to the upper groundwater box (SUZ (mm)). PERC 
(mm d-1) defines the maximum percolation rate from the upper to the lower 
groundwater box (SLZ (mm)). For the lake area, precipitation and evaporation is added 
and subtracted directly from the lower box. Runoff from the groundwater boxes is 
computed as the sum of two or three linear outflow equations (K0, K1 and K2 (d-1)) 
depending on whether SUZ is above a threshold value, UZL (mm), or not (Eq. (A5)). 
This runoff is finally transformed by a triangular weighting function defined by the 
parameter MAXBAS (d) (Eq. (A6)) to give the simulated runoff (mm d-1). 
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Tables 

Table 1. Catchment characteristics 

Catchment Station Area 
(km2) 

Lake 
(%) 

Forest 
(%) 

Open 
(%) 

Mean precipitation 
(mm y-1) (1981-1991) 

Mean runoff (mm y-1) 
(1981-1991) 

Sävaån Ransta 198 0.9 66.1 33 734 194 
Svartån Åkesta kvarn 730 4.0 69 27 733 276 

 

 

Table 2. Parameters and their ranges used for the Monte Carlo simulations 

Parameter Explanation Minimum Maximum Unit 
Snow routine     
TT Threshold temperature -2.5 2.5 °C 
CFMAX Degree-day factor 1 10 mm °C-1 d-1

SFCF Snowfall correction factor 0.4 1 - 
CWH Water holding capacity 0 0.2 - 
CFR Refreezing coefficient 0 0.1 - 
Soil and evaporation routine     
FC Maximum SM 50 500 mm 
LP SM threshold for reduction of 

evaporation 
0.3 1 - 

BETA Shape coefficient 1 6 - 
Groundwater and response 
routine 

    

K0 Recession coefficient 0.05 0.5 d-1

K1 Recession coefficient 0.01 0.3 d-1

K2 Recession coefficient 0.001 0.1 d-1

UZL Threshold for K0-outflow 0 100 mm 
PERC Maximal flow from upper to 

lower GW-box 
0 6 mm d-1

MAXBAS Routing, length of weighting 
function 

1 5 d 

 

 

Table 3. Objective functions 

Objective function  Value for ‘perfect’ fit 
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Figures 
 

 
Figure 1. Model goodness (Reff) against the values of SFCF and construction of the upper 

boundary curve (River Sävaån) 

Figure2. Upper boundary curves of the scatter plot of Reff and parameter values for all 
parameters (River Svartån). To allow comparison of different parameters, their values 
were scaled to lie between 0 and 1 using the boundaries given in Table 2. 

Figure 3. Portion of ranges (averages of both catchments) over which ‘good 
simultions’(i.e., Reff not more than 0.02, F not more than 0.1 less than the highest values 
obtained for each catchment respectively) 

Figure 4. Upper boundary curves of the scatter plots of model goodness and parameter 
values for FC (River Sävaån) 

Figure 5. Spring flood 1985 simulated with parameter sets that gave a fit  with Reff  not 
more than 0.02 less than the maximal value of Reff. The simulations with the lowest and 
highest peak discharge are shown with thick lines, the observed hydrograph is shown 
with the dashed line. 

Figure 6. Simulated maximal runoff during the spring flood in April 1985 against model 
performance (left: Reff, right: F) during calibration period (September 81- August 91) 
for different parameter sets 

Figure 7. Simulated runoff volume during a period of 15 days in July 1985 against model 
performance (left: Reff, right: F) during calibration period (September 81- August 91) 
for different parameter sets 
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Figure 1. Model goodness (Reff) against the values of SFCF and construction of the upper 

boundary curve (River Sävaån) 
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Figure 2. Upper boundary curves of the scatter plot of Reff and parameter values for all 
parameters (River Svartån). To allow comparison of different parameters, their values 
were scaled to lie between 0 and 1 using the boundaries given in Table 2.
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Figure 3. Portion of ranges (averages of both catchments) over which ‘good 
simultions’(i.e., Reff not more than 0.02, F not more than 0.1 less than the highest values 
obtained for each catchment respectively) 
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Figure 4. Upper boundary curves of the scatter plots of model goodness and parameter 
values for FC (River Sävaån) 
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Figure 5. Spring flood 1985 simulated with parameter sets that gave a fit  with Reff  not 
more than 0.02 less than the maximal value of Reff. The simulations with the lowest and 
highest peak discharge are shown with thick lines, the observed hydrograph is shown 
with the dashed line.  
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Figure 6. Simulated maximal runoff during the spring flood in April 1985 against model 
performance (left: Reff, right: F) during calibration period (September 81- August 91) 
for different parameter sets 
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Figure 7. Simulated runoff volume during a period of 15 days in July 1985 against model 
performance (left: Reff, right: F) during calibration period (September 81- August 91) 
for different parameter sets 
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