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Abstract 
Predictions of probabilities and magnitudes of 
extreme events are essential for water management. 
One approach for flood estimation is the use of 
conceptual runoff models. This approach, however, 
can be questioned for the same reason as the 
approach of extreme-value statistics: the model has 
to be used for conditions far beyond those used for 
model development and calibration. In this study 
the HBV model, a conceptual runoff model, was 
applied to four different catchments and differential 
split-sample testing (calibration on years with lower 
runoff peaks and testing it on years with higher 
peaks) was used to evaluate model performance for 
the situation when the model has to be used to 
simulate runoff during conditions different from 
those observed during calibration. To assess the 
value of improved calibration different goodness-
of-fit measures were used, which allowed to 
explicitly consider the ability of the model to 
simulate groundwater-levels and peak flows. The 
results indicated that applying a model to 
conditions different from those during the 
calibration period might not give accurate results 
and that improved calibration procedures might not 
automatically provide more accurate flood 
estimations.  

 

Introduction 
Predictions of probabilities and magnitudes of 
extreme events are essential for water management. 
The traditional approach of fitting distribution 
functions to the observed extreme values and 
extrapolating these functions can be criticised for 
different reasons (Linsley, 1986; Klemeš, 1986a, 
2000a,b). The main criticism is that a distribution 
function of unknown shape has to be extrapolated 
far beyond the probabilities that can be justified 
from the available observations. 

Alternatives to the distribution fitting are 
modelling approaches (e.g., Bergström et al., 1992; 
Calver and Lamb, 1995). The basic idea is to use a 
runoff model, which has been calibrated against 
existing streamflow data, to simulate the 
streamflow caused by extreme meteorological 
conditions. Obviously the need for data on extreme 
circumstances is only shifted from the streamflow 
to the meteorological data, but it might be more 
likely to have suitable data on extreme conditions 
for meteorological data than for streamflow. Firstly, 
more observations are often available, both in time 
and space, for meteorological data, such as 
precipitation or temperature, than for streamflow. 
Secondly the modelling approach allows combining 
extreme conditions (e.g., a winter with much snow 

accumulation, a rapid rise of temperatures in spring 
and a large rainfall event) (Bergström et al., 1992). 
The use of a model to estimate extreme runoff 
events has certainly advantages, but this approach 
can be criticised in exactly the same way as the 
fitting of some distribution function: for 
computation of extreme floods the model has to be 
applied for conditions far beyond the conditions 
used for development and calibration. The only 
reason why we should rely more on the model than 
on distribution functions is that we have confidence 
in the validity of the model and, thus, assume that 
extrapolation of the model calculations are more 
reliable. In order to have more confidence in a 
calibrated model than in a fitted distribution 
function we have to ensure that the model does not 
only correctly simulate runoff but also does so for 
the right reasons. 

A usual test of a model is a simple split-
sample test, where the model is calibrated on data 
from one period and tested for another, 
independent, period. This kind of test gives an 
indication how the model might perform for an 
independent period with similar conditions. 
Examples where the result of such a test is called 
‘not successful’ are seldom found in literature. This 
may be mainly because this kind of validation is a 
simple task (Kirchner et al., 1996; Mroczkowski et 
al., 1997). Furthermore, this kind of test is not 
suited to test the models’ ability to give reasonable 
simulations for conditions that differ from those of 
the calibration period (Xu, 1999). However, models 
are most important for problems where we have to 
apply the model beyond the conditions observed 
before. The need to apply a model is, for instance, 
much larger for predicting a 1000-year flood than 
for predicting a 10-year flood. In the latter case 
enough data may be available to compute the flood 
from time series without any model. 

In order to test how accurate model 
predictions might be when applying the model to 
different conditions a differential split-sample test 
is more suitable than the simple split-sample test 
(Klemeš, 1986b; Xu, 1999). The basic idea is to 
calibrate and to test the model on time periods with 
dissimilar hydrological conditions such as, for 
instance, a period with mainly small runoff events 
and a period with large events. Results of such a 
test may provide an indication of model 
performance when we have to extrapolate into 
unknown conditions. Although this is a more 
powerful test of a model, the use of this kind of test 
is by no means widespread. There are only a few 
noteworthy exceptions where models are tested 
using a differential split-sample test  (e.g., 
Refsgaard and Knudsen, 1996; Donelly-Makowecki 
and Moore, 1999). 

The issue of parameter uncertainty (e.g., 
Beven, 1993) has become widely recognized during 
recent years. Often parameter sets, which perform 
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equally well (according to some criterion) for a 
calibration period, can be found at very different 
locations in the parameter space. It may be argued 
that the problem of identifying a unique parameter 
set is not an issue for practical model applications, 
i.e., if different parameter sets were equally suitable 
to simulate runoff during a calibration period, any 
one of these sets may be applied. However as 
shown by, for instance, Seibert (1997) and 
Uhlenbrook et al. (1999), these ‘equally good’ 
parameter sets may give very different predictions 
for individual events. Uhlenbrook et al. (1999) 
computed design floods using ‘equally good’ 
parameter sets and found that the predicted peak 
discharge of a one-hundred-year flood varied from 
40 to almost 60 mm d-1.  

The need for improved model calibration 
and testing has been emphasized in the recent years 
(de Grosbois et al., 1988; Ambroise et al., 1995; 
Refsgaard, 1997; Kuczera and Mroczkowski, 
1998). Recent studies aiming at improving the 
calibration of runoff models can be classified into 
two groups: (1) making more use of the information 
contained in runoff series (e.g., Boyle et al., 2001) 
and (2) using additional data (e.g., Franks et al., 
1998; Lamb et al., 1998; Seibert, 2000). An implicit 
assumption is that the improved model calibration 
not only will reduce parameter uncertainty but also 
strengthen internal model consistency. It seems 
reasonable that this improved internal consistency 
could be associated with more reliable predictions 
outside the calibration domain. The idea is that, for 
a model that agrees with the real system in different 
respects (e.g., with observed internal variables), 
extrapolation beyond the testable conditions is more 
reasonable than for a model that just matched 
runoff during some period. While this assertion 
might be reasonable, the effects of improved model 
calibration on prediction errors still have to be 
investigated.  

In this study the HBV model (Bergström, 
1995), a conceptual runoff model, which is used, 
among other purposes, to compute design floods for 
dam safety in Sweden (Bergström et al., 1992; 
Lindström and Harlin, 1992), was applied to four 
different catchments where, in addition to 
precipitation, temperature and runoff data, also 
groundwater-level data were available. Differential 
split-sample testing was used to evaluate model 
performance for the situation when the model has to 
be used to simulate runoff during conditions 
different from those observed during calibration. 
The model was calibrated on years with lower 
runoff peaks and tested on years with higher peak 
flows. To assess the value of improved calibration 
the model performance was compared for 
simulations derived from including groundwater-
level observations as well as an additional peak-
flow criterion into the calibration. 

Materials and Methods 

HBV model 

The HBV model (Bergström, 1976; 1992) is a 
conceptual model that simulates daily discharge 
using daily rainfall and temperature, and monthly 
estimates of potential evaporation as input. The 
model consists of different routines, where 
snowmelt is computed by a degree-day method, 
groundwater recharge and actual evaporation are 
functions of actual water storage in a soil box, 
runoff formation is represented by three linear 
reservoir equations and channel routing is simulated 
by a triangular weighting function. For both the 
snow and the soil routine, calculations are 
performed for each different elevation zone, but the 
response routine is a lumped representation of the 
catchment. Further descriptions of the model can be 
found elsewhere (e.g., Bergström, 1992; 1995; 
Lindström et al., 1997; Seibert, 1997; 1999).  

Study Catchments 

Four catchments in Sweden were chosen for this 
study (Fig. 1, Table 1). The catchments were all 
mainly forested and ranged from 6 to 18 km2. On 
average the annual precipitation was 600-700 mm, 
and the annual runoff 250-300 mm.  Runoff was 
measured using v-notch or rectangular weirs. 
Precipitation measurements were available for each 
catchment from stations within, or less than 5 km 
outside, the catchment whereas for temperature data 
stations up to about 30 km away from the 
respective catchment had to be used. Data series 
with about twice-monthly observations of 
groundwater levels were available from 4 to 10 
wells for each catchment. The catchments were all 
mainly covered by till soil with the exception of the 
Tärnsjö catchment. At Tärnsjön a large esker (ridge 
of glaciofluvial deposits), rising up to 50 m above 
the surrounding land, runs through a part of the 
catchment. The remaining part of the catchment is 
covered by till soil. Previous studies indicated that 
the response function of the traditional HBV model 
might not be appropriate for the Tärnsjö catchment, 
and that an alternative response function may give 
better results (Bergström and Sandberg, 1983; 
Seibert, 2000). The recharge simulated by the soil 
routine is divided into two parts. A portion 
CPART [-], related to the portion of the till soil area, 
is added directly to an linear storage whereas the 
remaining recharge generated on one day is added 
evenly distributed over a subsequent period of 
CDELAY [d] days to another linear storage. The latter 
storage is thought to represent the esker in which 
recharge is delayed because of the large unsaturated 
zone (Seibert, 2000). 
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Model Application and Differential Split-
Sample Test 

For all four catchments, calibration and test periods 
were chosen so that the floods were significantly 
larger during the test period (Fig. 2). The maximum 
peak flows during the test period were 50 to 70 
percent larger than the largest peak flow during the 
calibration period (Table 1). The differential split-
sample test used in this study consisted of the 
following steps: (1) Monte Carlo model runs with 
randomly generated parameter sets for the 
calibration period, (2) selection of assemblies of the 
50 best parameter sets according to three different 
goodness-of-fit measures (defined below), and (3) 
simulation of the test period with all parameter sets 
of the assembly. For the Monte Carlo runs, ranges 
of possible values were specified for each of the 12 
free model parameters based on the range of 
calibrated values found in previous model 
applications (Bergström 1990; Seibert, 1999); these 
ranges were similar to those used by Seibert (1997). 
For each catchment 3 million parameter sets were 
drawn randomly using uniform distributions within 
these ranges. The model was run for each parameter 
set and the values of three different statistics were 
computed to evaluate model performance.    

The general agreement between observed 
(Qobs) and simulated (Qsim) catchment runoff was 
evaluated by the model efficiency, Reff (Eq. 1; Nash 
and Sutcliffe, 1970).  
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The third statistic used to evaluate model 
performance focused on the simulation of peak 
flows. The model efficiency for runoff simulations, 
R

The model performance was also evaluated 
with regard to the ability to reproduce observed 
groundwater level variations. The HBV model 
simulates the groundwater lumped over the 
catchment and, thus, the local observations could 
not be compared to the simulations directly. Instead 
the groundwater observations were spatially 
averaged, i.e., the arithmetic mean was computed 
from the observations at the different tubes. To 
allow comparison with the observed mean 
groundwater level the storage in the upper (SUZ) and 
lower (SLZ) groundwater box had to be transformed 
into a groundwater level, z [m a.s.l.]. A linear 
equation (Eq. 2) with a slope m, which 
corresponded to the inverse of the storage 
coefficient, and an offset c was used. The 
coefficients were determined by linear regression 
between the simulated storage and groundwater 
levels.  

( ) cSSmz LZUZ ++=  (2) 

The performance of the groundwater level 
simulation was evaluated using the coefficient of 
determination, r2, as objective function. For the 
Tärnsjö catchment, where the alternative model 
structure was used, the wells were grouped 
according to whether they were located on the esker 
or not and mean time series were computed for both 
groups. The geometric mean of the r2 values of the 
fit for the two series was computed as objective 
function. 

eff, tends to depend largely on the model fit for 
periods with high flow conditions. However, since 
the aim was to simulate extreme floods, another 
goodness-of-fit measure, which focused even more 
on high flow conditions, was used additionally. 
This measure, Rpeak (Eq. 3), addressed the ability of 
the model to reproduce peak flows directly by using 
the absolute differences between observed and 
simulated peak streamflows (Qpeak, obs and Qpeak, sim) 
for all n peaks during the simulation period. The set 
of peaks was determined from the observed runoff 
series, to be included a peak had to exceed the long-
term mean runoff by three times. Furthermore, only 
the largest peak within any one-month window was 
used. The corresponding simulated peaks were 
taken as the largest runoff during a one-week 
window centred on the date of the observed peak. 
While a shorter window might have been sufficient 
for rain events in the relatively small catchments 
used in this study, the length of the window was 
chosen to allow a somewhat longer time shift 
between observed and simulated peaks, which 
might occur in the case of snowmelt events. 
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Three different assemblies of ‘best’ 
parameters sets were compiled, each consisting of 
the 50 parameter sets which performed best 
according to one goodness-of-fit measure. The 
three measures used were: model efficiency (Reff), 
the mean of efficiency and goodness of 
groundwater level simulations (Reff and r2), as well 
as the mean of efficiency and goodness of peak 
flow simulations (Reff and Rpeak). Finally, these 
assemblies were used to simulate runoff for the test 
periods. In particular the ability to predict floods 
was tested based on the peak flows during the test 
period. Both median and the range of 80 percent of 
the predictions from the 50 parameter sets were 
computed. 
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Results 
Different objective functions judge the model 
performance with regard to different aspects. If two 
criteria are highly correlated no new information is 
provided by the additional objective function. 
However, in the case of the three objective 
functions used in this study there was a ‘trade-off’ 
between the objective functions (Fig. 3). This 
means that the criteria provided different 
information, but also that it is not possible to find a 
solution that was optimal according to all criteria 
simultaneously. 

In general good fits could be found for all 
catchments for the calibration period with 
efficiency values between 0.76 and 0.82 (Table 2). 
As in previous studies equally good calibration 
results could be obtained with very different 
parameter values. The model efficiencies were 
considerably lower when using the ‘best’ parameter 
sets to simulate the test period (Table 2). The drop 
of the efficiency values was most pronounced in the 
two catchments where the conditions were most 
different between calibration and test periods (Lilla 
Tivsjön and Tärnsjö). 

For the smaller events during the test period, 
simulated peak flows were simulated more or less 
acceptably, whereas the peak flow predictions were 
significantly erroneous for several of the larger 
events, in particular for the largest events (Fig. 4). 
Peak flows that were larger than those observed 
during the calibration periods were systematically 
underestimated by the model for all four 
catchments. These results did not vary significantly 
for the different parameter-set assemblies, although 
the systematic underestimation was somewhat 
smaller when the peak-flow criterion was 
considered (Fig. 4, right column). 

Discussion 
The simulated peak flows deviated significantly 
from the observations. Parameter uncertainty 
caused considerably different predictions for the 
different peak flows, despite the fact that only the 
very best parameter sets were included in each 
assembly (50 best of 3 million runs). Even more 
important, also the median of the 50 predictions 
was erroneous in many cases, especially for the 
largest floods. Contrary to the results of Harlin 
(1992), who did not find a systematic 
underestimation of extreme floods, the largest 
floods were almost all underestimated for all four 
catchments. There was hardly any improvement 
when using additional criteria for optimisation; 
neither the groundwater data nor the extra peak-
criterion had the effect one might have hoped for 
(Fig. 4). At least there was a small reduction of the 
bias of the peak-flow predictions when using the 
peak-flow criterion. Considering the groundwater-

level simulations for the selection of the best 
parameter sets provided the highest efficiency 
values for the test period in the Lilla Tivsjön 
catchment. This was not the case for the other 
catchments, where also the drop in model efficiency 
was of similar size for the different calibration 
criteria (Table 2). 

If calibrated on the test periods, runoff 
efficiency values were considerably higher than 
those obtained with the parameter sets determined 
based on the calibration period (Table 2). Also for 
Rpeak significantly higher values could be obtained 
with calibration on the test period (median for all 
catchments 0.83 instead of 0.73). The fact that it 
was possible to obtain much better fits for the test 
periods indicates that the failure to predict the 
higher peak flows was not a problem of the model 
structure. The model was in principle capable to 
better reproduce also higher peak flows, but other 
parameter sets than those determined based on the 
calibration periods were needed. 

Although not shown in this paper, it can be 
noted that the results were similar when other 
combinations of the objective functions, or using 
the volume error and the efficiency of the log-
runoff values as additional criteria, were used to 
select the assembly of best parameter sets. Even 
using just Rpeak as objective function only slightly 
reduced the systematic underestimation of large 
peak flows during the test period. 

The idea behind carrying out a differential 
split-sample test was that the errors made by 
extrapolation from small and medium sized events 
to the largest events on record correspond to the 
errors when using all existing data and 
extrapolating to events larger than any event on 
record. It is difficult, if not impossible, to examine 
this assertion. The errors could be expected to 
become larger because a catchment might behave 
more differently for the most extreme events. On 
the other hand the errors could be supposed to 
become smaller because runoff during extreme 
events will approach some limit given by the 
climatic input data.   

The catchments used in this study were all 
relatively small and, thus, the response times of the 
catchments might be smaller than the daily time 
step used for the simulations and the model 
evaluation. This might cause a degradation of 
model performance, but it is not obvious that this 
should affect larger events more than smaller 
events.  

The poor predictions of the larger peak 
flows might also partly be explained by errors in 
the observed data for the larger events. The 
precipitation input can be very uncertain for 
extreme rainfall events because of spatial 
variations. Also the observed peak flows can be 
erroneous. One problem is that rating curves are 
usually derived from data that does not include the 
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highest observed water stages. For the discharge 
stations used in this study, the highest runoff values 
during the test periods were about twice as high as 
the highest measured runoff used to calculate from 
the rating curve (SMHI, pers.com.). While the 
standard error (95% confidence interval) was below 
7 percent for all gauging stations the rating curves 
up to the highest measured discharge, extrapolation 
of the stage-discharge relation might of course 
introduce additional errors (Jónsson et al., 2002). 
At least for the stations used in this study 
extrapolation could be considered to be more 
reliable because the gauging stations were all weirs. 

While errors in the observed data of the 
larger events might excuse the poor model 
predictions, the recognition of these potential errors 
does not mean that model predictions of, for 
instance, a one-hundred-year flood based on all 
existing data are more reliable than indicated by the 
results of this study. Contrary, if the largest 
observed events are affected by measurement 
errors, extrapolation of a model, which has been 
calibrated based on these data, will become even 
more uncertain.  

Concluding Remarks 
There was a significant range of predictions 
obtained using parameter sets that behaved equally 
well, according to some goodness-of-fit measure, 
during the calibration period. This prediction 
uncertainty caused by parameter uncertainty has 
been demonstrated before (e.g., Seibert, 1997; 
Uhlenbrook et al., 1999). Again the results strongly 
suggest to consider these uncertainties and to 
present model predictions rather as ranges than as 
single values.  

The results of this study indicate that 
extrapolations of a model, i.e., the simulation of 
conditions not observed during the calibration 
period, should be interpreted with care. This is of 
special concern when models are to be used to 
predict extreme events such as in the case of 
design-flood estimation. Furthermore, the results 
suggested that improved calibration procedures 
might not automatically provide more accurate 
flood estimations. The results presented in this 
paper are based on four small catchments and 
relatively short calibration and test periods. Results 
obviously might be different in other cases, but 
more research is motivated on the extrapolation of 
models. The systematic underestimation of the 
largest peak flows is of special concern since this 
would imply the possibility of a general 
underestimation of design floods. 

It can be argued that more physically based 
models might have a greater potential to obtain 
predictions beyond the range of conditions during 
calibration. However, Refsgaard and Knudsen 
(1996) did not find any significant differences 

between a fully-distributed, physical model and a 
lumped, conceptual model with regard to model 
performance in a differential split-sample test. The 
assertion of the superiority of more physical 
models, thus, remains to be demonstrated. A 
differential split-sample test as used in this study 
provides a more powerful test on model capabilities 
than the usual split-sample test, because it allows 
testing the ‘risky’ predictions of a model rather than 
the ‘safe’ ones. 
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Figure 1. Location of study catchments  
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Figure 2. Runoff series for calibration and test periods in the catchments Lilla Tivsjön (a), 
Tärnsjö (b), Lefsebäcken (c) and Nolsjön (d) 
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Figure 3. Model performance for the Monte Carlo runs according to the different criteria for 
the Lilla Tivsjön catchment. Each dot represents one model run with a randomly generated 
parameter set. The dashed lines indicate the thresholds for the 50 best parameter sets 
according to the combination of (a) runoff efficiency and goodness of groundwater 
simulations and (Reff and r2), as well as (b) efficiency and goodness of peak flow simulations 
(Reff and Rpeak). 
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Figure 4. Errors of the simulated peak flows for peaks of different magnitudes during the test period for the four 
catchments. Both the median and the 80-percent range of the prediction errors obtained using the 50 best 
parameter sets are shown. The assemblies of best parameter set were determined with regard to the model 
efficiency (Reff, left column), the mean of efficiency and goodness of groundwater level simulations (Reff and r2, 
middle), as well as the mean of efficiency and goodness of peak flow simulations (Reff and Rpeak, right). The 
shaded area indicates where the model was extrapolated, i.e., events that were larger than those observed during 
the calibration period. 
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Tables 
Table 1. Catchments characteristics 
Characteristic Lilla Tivsjön Tärnsjö Lefsebäcken Nolsjön 
SMHI1 station number 42-1920 54-2299 108-1815 67-1912 
Area [km2] 12.8 14 5.2 18.2 
Lake percentage [%] 2.7 1.8 5.4 1.5 
Maximum flow during calibration period 
[mm d-1] 

5.3 3.6 8.1 6.8 

Maximum flow during test period 
[mm d-1] 

8.4 5.3 14.4 10.3 

 

1 Swedish Meteorological and Hydrological Institute 
 

Table 2. Model efficiency (Reff) for the calibration and test period using assemblies of the parameter sets which 
performed best during the calibration period according to the three different objective functions (medians of 50 
simulations, CP=calibration period, TP=test period). The efficiency values that could be achieved with 
calibration on the test period are given for comparison. 
 

Lilla Tivsjön Tärnsjö Lefsebäcken Nolsjön Best parameter sets 
according to…. CP TP  CP  TP  CP TP CP TP 
Reff 0.82 0.36 0.79 0.65 0.77 0.75 0.76 0.72 
(Reff+r2)/2 0.73 0.40 0.69 0.54 0.74 0.73 0.67 0.61 
(Reff+Rpeak)/2 0.78 0.21 0.75 0.64 0.76 0.75 0.73 0.71 

Calibration on test period  0.92  0.78  0.81  0.85 
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