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Abstract The uncertainties arising from the problem of identifying a representative 
model structure and model parameters in a conceptual rainfall-runoff model were 
investigated. A conceptual model, the HBV model, was applied to the mountainous 
Brugga basin (39.9 km2) in the Black Forest, southwestern Germany. In a first step, a 
Monte Carlo procedure with randomly generated parameter sets was used for 
calibration. For a ten-year calibration period, different parameter sets resulted in an 
equally good correspondence between observed and simulated runoff. A few parameters 
were well defined (i.e., best parameter values were within small ranges), but for most 
parameters good simulations were found with values varying over wide ranges. In a 
second step, model variants with different numbers of elevation and land use zones and 
various runoff generation conceptualisations were tested. In some cases representation 
of more spatial variability gave better simulations in terms of discharge. However, good 
results could be obtained with different and even unrealistic concepts. 

The computation of design floods and low flow predictions illustrated that the 
parameter uncertainty and the uncertainty of identifying a unique best model variant 
have implications for model predictions. The flow predictions varied considerably. The 
peak discharge of a flood with a probability of 0.01 yr-1, for instance, varied from 40 to 
almost 60 mm d-1. It was concluded that model predictions particularly in applied 
studies should be given as ranges rather than as single values.  

 
L’ incertitude de prédiction d’un modèle conceptuel pluie-débit due à 
l'identification de des paramètres et de la structure 
Résumé Cet article étudie les incertitudes dues à l'identification d'une structure 
représentative et à la détermination des paramètres d'un modèle conceptuel pluie-débit. 
Le modèle conceptuel HBV a été appliqué au bassin versant montagneux de la Brugga 
(39.9 km2), situé au sud-ouest de l'Allemagne, dans la Forêt Noire. Dans un premier 
temps, une procédure de Monte Carlo avec un jeu de paramètres générés aléatoirement a 
été appliquée pour la calibration. Pour une période de calibration de dix ans, plusieurs  
jeux de paramètres ont fourni une bonne correspondance entre les débits observés et 
simulés. Seuls quelques paramètres ont été bien définis, c'est-à-dire qu'ils prennent des 
valeurs dont l'étendue est faible. Pour la plupart des autres paramètres, de bonnes 
simulations ont également été obtenues mais avec des valeurs très variables. Dans un 
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second temps, des variantes de modèle ont été testées en faisant varier,le nombre des 
zones d’altitude et d’occupation du sol et les concepts de génération de crue. Dans 
certains cas, une plus grande variabilité spatiale fournit de meilleures simulations en 
terme de débit. Il faut noter toutefois que de bons résultats peuvent être obtenus avec 
des concepts différents et même irréalistes. 

La détermination des crues et la prédiction des débits d’étiage ont illustré le fait 
que l'incertitude attachée au paramètre et celle dû à l'identification d'une seule structure 
de modèle ont des implications pour les prédictions des modèles. La prédiction des 
débits a varié considérablement. Le débit de pointe pour une crue avec une probabilité 
d'apparition de 0.01 a-1 peut varier par exemple de 40 mm j-1 jusqu'à pratiquement 60 
mm j-1. En conclusion, les prédictions des modèles et plus particulièrement dans les 
études appliquées devraient être données plutôt sous formes d'intervalles que de valeurs 
uniques. 
 
 
INTRODUCTION  
Conceptual rainfall-runoff models are widely used tools in hydrology. Contrary to more 
complex, physically based, distributed models such as the SHE model (Abbott et al., 
1986a), the required input data are readily available for most applications. Furthermore, 
conceptual models are usually simple and relatively easy to use. In spite of the 
attractiveness of conceptual models they suffer from some fundamental problems 
(Abbott et al., 1986b; Todini, 1988; Beven, 1989; Bergström, 1991). One fundamental 
problem is that conceptual models often are overparameterized with intercorrelated 
model parameters (e.g., Jakeman and Hornberger, 1993; Gaume et al., 1998). Some 
model parameters have a physical basis, but since they are effective parameters on the 
catchment scale they are hardly measurable in the field. This makes a model calibration 
inevitable. However, it is often not possible to find one unique ‘best’ parameter set, i.e., 
different parameter sets give similar good results during a calibration period (e.g., Mein 
& Brown, 1978; Beven & Binley, 1992; Duan et al., 1992; Beven, 1993; Freer et al., 
1996; van der Perk & Bierkens, 1997; Seibert, 1997a). Parameter uncertainty makes 
simulations for periods outside the calibration period less reliable (Melching et al., 
1990; Harlin & Kung, 1992). In addition, ‘model uncertainty’ may exist, i.e., an 
uncertainty in which model to choose (Beck, 1987; Melching et al., 1990, Piñol et al., 
1997). During model development, concepts of catchment hydrology are implemented 
into the model as a simplified representation of real processes. The user has to decide 
which one of the many existing models is the suitable and choose the spatial delineation 
as, for instance, the number of elevation or land use zones. Usually, for most of these 
decisions there is a lack of objective criteria (Mroczkowski et al., 1997).  

The HBV model (Bergström, 1976) is a conceptual model of catchment 
hydrology originally developed for Scandinavian catchments. During the last two 
decades it has been applied in more than 30 countries world-wide (Bergström, 1992). 
The HBV model has been used for different hydrological tasks, for instance, to compute 
spillway design floods or flood forecasting (Bergström, 1992) and to study the effects of 
changes in climate (Saelthun, 1996) and land use (Brandt et al., 1988). Different 
attempts have been made to relate the parameters of the HBV model to catchment 
characteristics for regionalization purposes (Bergström, 1990; Braun & Renner, 1992; 
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Seibert, 1998; Uhlenbrook et al., 1998). The code of the model has been rewritten in 
several versions. Its different versions provide examples of different decisions during 
the model development. In the original Swedish version, for instance, computations for 
each elevation-land use zone are performed separately in both the snow and the soil 
routine (Bergström, 1992), while separate computations are made only in the snow 
routine in the Swiss version where the soil routine is lumped (Braun & Renner, 1992).  

The aim of this study was to investigate the uncertainties arising from different 
model structures and poorly defined model parameters when using a conceptual rainfall 
runoff model. The HBV model was selected for this study as it is considered to be a 
typical representative of such models. The parameter uncertainty was examined using a 
Monte Carlo procedure with the classical HBV model structure (Bergström, 1992). 
Furthermore, different model settings (e.g., number of elevation or land use zones) and 
modified model structures (different runoff generation routines) were tested. When 
testing the model structures, the same modeling framework was used and the number of 
parameters were kept constant in most model variants. This made it possible to compare 
the results directly. 

It may be argued that the problem of identifying a unique parameter set and 
model variant is not an issue for practical model applications, i.e., if different parameter 
sets and model variants were equally suitable to simulate runoff during a calibration 
period, any one of these may be applied (Lindstöm, 1997). However, for model 
predictions outside the calibration period these parameter sets and model variants can 
not be expected to give similar results. To evaluate this important implication of the 
identifiability problems, the uncertainty of simulated discharge was addressed in this 
study. The simulation of different hydrological events (floods and low flows) using 
equally good parameter sets or model variants were compared. This comparison was 
used as a simple method to quantify the prediction uncertainty caused by identifiability 
problems when using a conceptual rainfall runoff model. 
 
 
MATERIAL AND METHODS  
 
The HBV model 
The HBV model (Bergström, 1976) is a conceptual model of catchment hydrology 
which simulates daily discharge using as input variables daily rainfall and temperature 
and monthly estimates of potential evaporation. The model consists of different routines 
representing snow accumulation and melt by a degree-day method, groundwater 
recharge and actual evaporation as functions of actual water storage in a soil box, 
groundwater by three linear reservoir equations and channel routing by a triangular 
weighting function (Fig. 1). Further descriptions of the model can be found elsewhere 
(Bergström, 1992, 1995; Harlin & Kung, 1992; Seibert, 1997a, 1998). The version of 
the model used in this study, ‘HBV light 1.2’ (Seibert, 1997b), corresponds to the 
version HBV-6 described by Bergström (1992). 
 
Study Site  
The study was performed in the Brugga basin (39.9 km2), located in the Southern Black 
Forest in southwestern Germany. It is a mountainous catchment with elevation ranging 
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from 450 to 1500 m a.m.s.l. and a nival runoff regime. The mean annual precipitation 
amounts to 1750 mm generating a mean annual discharge of approximately 1200 mm. 
About two thirds of the annual precipitation in the upper part and one third in the lower 
part of the catchment falls as snow. The bedrock consists of gneiss and anatexists, 
covered by soils and drift of varying depths (0.5-10 m). The basin is widely forested 
(75 %) and the remaining area is pasture; urban land use is below 2 %. Tracer 
investigations indicate that fast runoff components are generated on saturated areas and 
on mainly steep, highly permeable slopes, where macropore flow and pipe flow occur, 
and perched water tables may spread (Güntner et al., 1998; Lindenlaub et al., 1997; 
Mehlhorn et al., 1998). In addition, 18O investigations showed that there was a 
considerable old water component in storm runoff, indicating that soil and groundwater 
displacement take place. The slower runoff components are mainly generated in the 
deeper weathering zone and the fractured hard rock aquifer (Lindenlaub et al., 1997). 

Based on data from two meteorological stations, Freiburg (269 m a.m.s.l., 
located 10 km outside the catchment) and Feldberg (1493 m a.m.s.l., located at the 
highest part of the catchment), change in temperature and precipitation with elevation 
was estimated as a temperature decrease of 0.6 oC per 100 m and a relative increase of 
precipitation of 6 percent per 100 m. Monthly long-term mean values of the potential 
evapotranspiration were computed using the formula of Jensen & Haise (1963). For 
each day, these values were corrected based on the deviations of the temperature from 
its long-term mean as proposed by Lindström & Bergström (1992). A 10-year record 
(1975-84) was used for initialization (11 months) and calibration of the model. 
According to general experiences (e.g., Bergström, 1992; Sorooshian & Gupta, 1995; 
Yapo et al., 1996) the length of this period was considered to be sufficient. 
 
Monte Carlo procedure 
The hypothesis that very different parameter sets can produce almost equally good fits 
between simulated and observed runoff was tested by using the following Monte Carlo 
procedure. For each parameter, wide ranges of possible values were set based on a range 
of calibrated values from other model applications (e.g., Bergström, 1990). Constant 
values were used for two less sensitive parameters in the snow routine (CWH and CFR) 
throughout the study. For the Monte Carlo simulations, 400 000 parameter sets were 
generated using random numbers from a uniform distribution within the given ranges 
for each parameter (Table 1). For each parameter set the model was run and the 
efficiency as proposed by Nash and Sutcliffe (1970), here called Reff, was computed as 
objective function. 
 
Investigated model variants 
In a second step, the identifiability of the model structure was examined. The standard 
version of the model (Fig. 1, referred to as variant I) was applied using 1, 2, 5, 11 and 
20 elevation zones of equal vertical extent. The area of each elevation zone was 
determined from a digital elevation model. For the model computations the mean 
elevation within an elevation zone was used. Parameter values were not allowed to vary 
for the different elevation zones, so the number of parameters (13) was equal for all 
these cases. As another variant (variant II), the elevation zones (1 to 20) were 
subdivided into two land use classes (forest and open land). In these cases the number of 
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parameters increased to 18 since parameter values were allowed to vary between the 
two classes for the snow (CFMAX, SFCF, but not TT) and soil routine (FC, LP, 
BETA). In the remaining model variants (variant III-VII) five elevation zones with a 
single land use class were used. 

For each elevation zone, the precipitation and the temperature input were 
computed from the measured data according to elevation. Model computations for the 
different zones were performed separately for some of the routines (see below) before 
water was mixed together and the subsequent computations were performed as a lumped 
approach. Altogether three variants with varying degree of distributed model 
calculations were studied (Fig. 2): lumped computations in all routines (i.e., one 
elevation zone), separate computations for each elevation zone only in the snow routine 
(variant III, Swiss version, Braun & Renner, 1992) and in the snow and soil routines 
(variant I, Swedish version; Bergström, 1992). As a new model variant (variant IV) the 
upper box in the response function was treated separately for each elevation zone in 
addition to the separate computations in the snow- and soil routines (Fig. 2). The 
number of parameters was equal for all cases because parameter values were restrained 
for the different elevation zones in any of the variants. 

Furthermore, three alternative model structures of the response routine were 
tested. The first was a response function using only one box, where the upper two 
outflows were active only if the storage was above certain threshold values, UZL1 and 
UZL2 [mm] (variant V, Fig. 3a). The second variant used three boxes with a linear 
storage-outflow relation and a maximum flow rate down to the next box of PERC1 and 
PERC2 [mm d-1] (variant VI, Fig. 3b). The third alternative was to divide the recharge 
generated from the soil routine into two parts. The portion PART [-] was added directly 
to a linear storage whereas the remaining recharge generated on one day was evenly 
distributed over a subsequent period of DELAY [d] days and added to a second linear 
storage (variant VII, Fig. 3c). The same number of parameters were used in the one and 
three box variant as in the standard version, whilst for the delay variant, one parameter 
could be eliminated. 

The different variants may reflect different concepts of runoff generation. The 
one-box variant (variant V) may represent the transmissivity feedback concept (Bishop, 
1991) where runoff increase is explained by a large increase in the transmissivity when 
groundwater levels rise into layers with high hydraulic conductivity near the ground 
surface. The concept behind the three-box variant (variant VI) consists of separate 
aquifers, one upon the other, and the development of perched water tables. The standard 
version may be seen as a combination of both concepts. The delay variant (variant VII) 
may be seen as a representation of the situation where runoff is the sum of a fast 
response, e.g., a shallow groundwater, and a damped, slow response, e.g., a deeper hard 
rock aquifer. 

In summary, the following model settings and structures were tested and 
compared. For the model variants III to VII, five elevation zones with one land use class 
were used. 
I  Standard version with 1, 2, 5, 11 and 20 elevation zones and one land use class  
II  Standard version with 1, 2, 5, 11 and 20 elevation zones and two land use classes 
(forest and open) 
III  Distributed computations only in the snow routine, lumped soil and response 
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routine 
IV  Distributed computations for snow and soil routine and for the upper box of the 
response function, only the lower box and routing routine were lumped 
V  Response function using one box with three linear outflow equations 
VI  Response function using three boxes, each with one linear outflow 
VII  Response function using two parallel boxes and a delayed inflow into one of 
them 
 
For each case, the model was calibrated using the efficiency, Reff, as objective function. 
The optimal parameter set for each model variant was identified using a trial and error 
procedure supported by Monte Carlo simulations, i.e., starting with wide parameter 
ranges and, in iterations, confining these ranges more and more. Finally a manual fine-
tuning followed this procedure. 
 
Uncertainty of simulated discharge 
The uncertainty of the simulated discharge was addressed by comparing the simulations 
of different hydrological scenarios by using various parameter sets of equal quality for 
model variant I and different model structures and settings (variants I to VII). The 
quality of the parameter sets was classed as ‘good’ and ‘very good’ for the model 
variant I, when the computed efficiency for the simulation of the 10 year record was 
higher than 0.850 and 0.860, respectively. These numbers were fixed with regard to the 
best parameter set with an efficiency 0.867 (see results). The different model structures 
were defined as equally good when the efficiency of the best parameter set was higher 
than 0.860. 

These parameter sets and model variants were used to simulate different 
hydrological events. Extreme rainfall and snowmelt events and low flow periods were 
investigated. Rainfall events were examined with a 14-day synthetic precipitation 
sequence (SPS). For the 14 days the same rainfall pattern was used as proposed by 
Harlin & Kung (1992). However, the daily values were multiplied by a factor so that the 
3 days with the maximum precipitation agreed with the design precipitation for 3 days 
recommended by the German Meteorological Survey for different probabilities 
(Landesanstalt für Umweltschutz & Deutscher Wetterdienst, 1978). The rainfall 
sequence was applied in spring, when the soil storage was saturated after snowmelt and 
in autumn after a dry period in summer. Floods in connection with snowmelt were 
examined by the simulation of a real event (December 1992). The uncertainty of low 
flow simulations was investigated for the longest rainless period (18 days) and for the 
period with the lowest measured runoff for a week within a 20-year record. All these 
periods were outside the calibration period. 

The used methodology can be interpreted as a special, simplified case of the 
Generalised Likelihood Uncertainty Estimation (GLUE) procedure as proposed by 
Beven & Binley (1992). In the GLUE procedure as applied , for instance, by Freer et al. 
(1996) all parameter sets providing an model efficiency above some threshold value are 
assigned a likelihood depending on the efficiency. These parameter sets with certain 
likelihood values are then used to compute uncertainty bounds. In this study all 
parameter sets received the same likelihood, but the rejection criteria was much stricter 
(0.85 and 0.86 compared to 0.3, as used by Freer et al. (1996)). Furthermore, it has to be 
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emphasized that in this study a large number of model runs (i.e., 400 000 runs) were 
performed. 
 
RESULTS 
 
Parameter identifiability 
A good agreement between observed and simulated runoff was obtained by the HBV 
model (variant I), simulations with a Reff greater than 0.80 were obtained for several 
thousand of the 400 000 parameter sets. The highest value for Reff was 0.867. A number 
of 38 parameter sets resulted in a Reff value greater than 0.860 (referred as ‘very good’ 
parameter sets in the further description) and 380 parameter sets resulted in Reff values 
greater than 0.850 (‘good’ parameter sets). Good simulations were found within a wide 
parameter range for most of the parameters. Some parameters were better defined and 
varied within smaller ranges, as shown by a distinct peak when plotting the parameter 
value against the efficiency (Fig. 4). It should be noted that every parameter value 
could, of course, result in poor simulations due to the values of the other parameters. 

The parameters of the snow routine TT and CFMAX, the soil parameter LP and 
the routing parameter MAXBAS were, more or less, well defined (Fig. 5). The other 
parameters were badly defined, e.g., an efficiency, Reff , of more than 0.850 (‘good’ 
parameter sets) could be achieved with values for FC ranging from 160 to 550 mm. 
Another example is K2, for which good results could be obtained for parameter values 
from 0.01 to 0.00012 d-1. These values correspond to a turnover time of the dynamic 
reservoir ranging from 100 days to approximately 23 years. In a comparable study in 
southern Sweden (Seibert, 1997a, 1998) other parameters were found to be well or 
badly defined. For instance, the FC parameter, which was badly defined in the Brugga 
catchment, was a rather well defined parameter in some of the Swedish basins. On the 
other hand, the degree-day factor CFMAX (well defined in this study) was less well 
defined in the investigated Swedish basins. This indicated that it is difficult to know in 
advance, whether a specific parameter is well defined or not. 

 
Model identifiability 
After calibration the efficiency of the different model variants varied between 0.825 and 
0.876. A fairly good simulation of observed runoff was obtained (Reff=0.830) with a 
totally lumped model application (variant I, one elevation-land use zone). Dividing the 
catchment into two elevation zones resulted in a significant increase of the model 
efficiency (Reff=0.862), whereas further divisions had a limited effect on simulations of 
runoff (Fig. 6). 

The use of two different types of land use (variant II) resulted in higher 
efficiency values. However, the increase was not large considering that five more 
parameters were used. The increase was independent of the number of elevation zones 
(Fig. 6). Distributing only the snow routine (variant III) gave a significant increase of 
the efficiency compared to the totally lumped variant (Fig. 2), whereas the efficiency 
increased only slightly when the distributed snow and soil routines were included in the 
simulation (variant I). The simulations became better when separate computations were 
performed for each elevation zone in the upper groundwater box (variant IV).  

With the delay variant (VII) of the response routine an efficiency of only 0.825 
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could be obtained, whereas the other response routine variants resulted in almost 
equally good fits. Simulations using the one-box variant (V) were roughly equal (Reff 
=0.861) to the standard version (Reff =0.864). In applying the three-box variant (VI) a 
slightly higher efficiency was obtained (Reff =0.869). 

 
Implications of identifiability problems 
The ‘good’ and ‘very good’ parameter sets of model variant I as well as all other 
variants with an efficiency of more than 0.860 (with their respective best parameter set) 
were used to simulate the different hydrological scenarios. The different parameter sets 
and model variants gave large ranges in the runoff predictions for the various scenarios 
(Table 2). 

In general the effects of the parameter uncertainty were somewhat larger than 
the effects of the different model variants. Using only the ‘very good’ parameter sets for 
model variant I, for instance, the simulated peak discharge varied from 40 to 58 mm d-1 
when the synthetic precipitation sequence (SPS) with a probability of 0.01 yr.-1 was 
applied in spring (Fig. 7). The range of peak runoff simulated by the different model 
variants was 44 – 55 mm d-1 (Table 2). Autumn events had a lower peak, because of the 
drier antecedent moisture conditions, and the range of simulated peak discharges was 
slightly smaller (Fig. 8). The same order of magnitude was found for the uncertainty of 
peak discharge of the winter event (Table 2). 

The effects of the model and parameter uncertainties were larger for low flow 
conditions than for the flood simulations (Table 2). For example, within a 20 year 
period the simulated mean discharge during the week with lowest discharge varied 
between 0.11 and 0.96 mm d-1 using only ‘very good’ parameter sets, and between 0.03 
and 1.24 mm d-1 when the ‘good’ parameter sets were used. The ranges arising from the 
different parameter sets and different model variants were similar, e.g., the mean 
discharge during the rainless period of 18 days ranged from 0.8 to 1.5 mm d-1 in both 
cases. 

 
 

DISCUSSION 
 
General 
It is important to distinguish between an insensitive and an uncertain model parameter. 
In the first case model output is not sensitive to different values of a parameter. For an 
uncertain parameter, on the other hand, model output may be sensitive to changes of the 
parameter value, but these changes can be compensated for by other parameters. The 
Monte Carlo method showed that good simulations could be achieved over a wide range 
of parameter values even for sensitive parameters. For instance, the simulations were 
sensitive to changes in FC when FC was changed independently, whereas good 
simulation could be achieved over a wide range when other parameters were also 
varied. The Monte Carlo procedure used in the first part of this study had the advantage 
that interactions between parameters were implicitly taken into account since complete 
parameter sets were varied instead of varying individual parameters. It was shown that 
very different but almost equally good parameter sets exist for the standard version of 
the HBV model. Comparable results were found by Sorooshian & Gupta (1995), after 
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assessing different automatic calibration procedures for the Sacramento model. They 
also concluded, that it is difficult, if not impossible, to obtain a unique set of optimal 
parameters and that multiple optima exist. 

The threshold values 0.850 and 0.860 of Reff for ‘good’ and ‘very good’ 
parameter sets of model variant I were set arbitrarily. But they relate to the best 
parameter set with an Reff of 0.876 which was found for this model version. However, 
varying these values within reasonable ranges would not alter the results substantially. 
The chosen thresholds are high compared to an application of the GLUE method in 
connection with TOPMODEL, where the model efficiency rejection criterion was set to 
0.3 (Freer et al., 1996). This emphasises the significance of the obtained results. 

When using the Monte Carlo procedure, the intervals of the recession 
coefficients (K0, K1, K2) overlapped, thus parameter sets with a larger storage 
coefficient of a lower outlet were included, i.e., K1 could be larger than K0 or K2 could 
be larger than K1. These combinations are unusual in model applications, but have been 
used before (e.g., Braun & Renner, 1992). The contributions of the different storages 
change with different parameterisations. For instance, with large values for PERC and 
small values for K1 the contribution of the lower box increases even during periods of 
high flow. These parameter sets were also tested, because it was not apparent why one 
outflow should (not) contribute during certain periods. It should be noted that for all 
‘good’ and ‘very good’ parameter sets all three outflows contributed significantly to 
runoff, i.e., all parameters were active. 

In the second part of the study, the standard version was applied by using 
different variants of the model based on different settings and modified runoff 
generation routines. However, the same modeling framework and input data was 
applied to the simulation. Also the number of parameters remained constant in most 
cases. This made the comparison of the different model variants straightforward. To 
estimate the goodness of the model performance only the simulation of one optimised 
parameter set was considered, i.e., the parameter uncertainty was investigated only for 
the standard version. Although the same dimension of parameter uncertainty is expected 
for all investigated model variants. 

In this study only the efficiency as proposed by Nash & Sutcliffe (1970) was 
used as an objective function to evaluate the goodness of the simulation. Results may 
differ if other objective functions are applied (Gan et al., 1997). It has to be noted that 
objective functions as the efficiency give an average value over the simulation period 
and, thus, give no information about which periods are simulated with more or less 
success. Nevertheless, the use of the efficiency in this study is justified by the fact that it 
is the most widely used measure to assess model goodness (Singh, 1995). 
 
Model variants versus physical reality 
Delineation into two elevation zones was required, but also sufficient to obtain good 
model fits for this mountainous catchment. This result, and also the finding that fairly 
good simulation results were obtained with only one elevation zone, was unexpected 
because snow processes vary considerably with elevation in the Brugga catchment. The 
upper parts of the catchment are covered by snow for up to six months of the year while 
in the lower parts the snow cover is not continuous throughout the winter. However, it 
was not necessary to simulate these differences in detail to get reasonable simulations of 
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observed runoff. Subdividing the elevation zones according to land use resulted in a 
more realistic model application, because hydrological processes and storage capacities 
vary between forested and open areas. The increase of runoff simulation goodness, 
however, was rather small considering the increase in model parameters. A detailed 
delineation into elevation and land use zones could not be motivated by these results, 
but still it may be motivated by hydrological common sense. For an objective 
motivation, however, additional information as, for instance, data on the extension of 
saturated areas (Franks et al., 1998), distributed snow cover (Cazorzi & Dalla Fontana, 
1996) or soil moisture is required. 

The efficiency of model simulations increased with an increase in the degree of 
distribution, i.e., the number of routines that are allowed to have reservoirs with a 
varying degree of filling for the different elevation zones. The best fit between 
simulated and observed runoff was obtained with a new variant of the HBV model, 
which was investigated in this study. In this variant not only the snow and soil routine 
but also the upper groundwater box was computed separately in each zone (variant IV) 
and this appeared to be the most logical variant for this mountainous catchment. 
Shallow groundwater responds and contributes to runoff according to local inputs. Snow 
melt may occur, for instance, only in the upper part of the basin and will raise 
groundwater levels and generate runoff in the upper reaches of the catchment without 
influencing the lower parts. The variant with a distributed upper groundwater box has to 
be tested in other catchments, but the results of this study were encouraging. 

The one-box variant (V) of the response routine does not agree with the concept 
of runoff generation developed in the Brugga catchment from detailed field 
investigations including tracer studies (Lindenlaub et al., 1997; Güntner et al., 1998; 
Mehlhorn et al., 1998). Therefore, the good fit using this variant was somewhat 
surprising. The three-box variant (VI) and in particular the standard response function 
conceptualize the developed runoff formation concept best, but their efficiency values 
were not significantly higher. The only formulation of the response function that could 
be rejected was the delay variant (VII) with an efficiency of 0.825 for the 10-year 
calibration period. However, the rejection of this variant could only be done in 
comparison with the other formulations that gave significantly better results.  

Zhang & Lindström (1996) compared the HBV model in detail with another 
conceptual model, namely the Chinese Xinanjiang model (Zhao, 1992). They found that 
both models performed well and it was difficult to see any great quality difference in the 
runoff simulations. They recommended to be cautious when interpreting conceptual 
models as actual physical descriptions of basin hydrology, and when using one model 
for studying the impact studies of climate or land use change. The results obtained in 
this study support these results and recommendations. 

Piñol et al. (1997) compared different modifications of TOPMODEL (Beven et 
al., 1995) in Mediterranean catchments in which they started from their perceptual 
understanding of the catchments. They found some of the modifications to provide 
qualitatively better simulations, but only a slight improvement in terms of the model 
efficiency. They concluded, that different measures of the goodness-of-fit and 
distributed data for additional validation would be needed to assess the model 
predictions more thoroughly. 
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Sometimes a successful simulation of observed runoff by a conceptual model is 
interpreted as a proof that the concept behind the model is true for the investigated basin 
(e.g., Flügel, 1995; Kirnbauer et al., 1996; Buchtele et al., 1996). This study, however, 
supported the findings of earlier studies (e.g., Jakeman & Hornberger, 1993) that the 
information content in a rainfall-runoff record is too low to allow complex model 
identification. Good fits of simulated and observed runoff could be obtained starting 
from different and even unrealistic concepts. Therefore, from a good fit it should only 
be concluded that the model may represent one possible concept with other concepts 
possible as well. 

 
Implications of identifiability problems 
The investigated predictions of floods and low flow periods showed, that in particular 
the parameter uncertainty has implications for the operational use of the model. 
Lindström (1997) states that "for most practical applications it should be sufficient to 
find one good parameter set which gives an almost optimum fit and no volume errors" 
(p. 167). The results of this study disagree with this statement. The implications for the 
predicted discharges were considerable not only for extreme events (extrapolation), but 
also for events of similar magnitude to those during the calibration period. Similar 
findings are expected for the use of the model during the evaluation of land use or 
climate change effects. Therefore, in such studies parameter uncertainty should be 
considered. 

The difficult identifiability of the model structure also caused uncertainties in 
the flow predictions. They were slightly smaller than the implications caused by the 
parameter uncertainty. However, it should be noted that the different model variants 
tested in this study were rather similar. The variations of simulation results are expected 
to increase for predictions with totally different conceptual rainfall-runoff models.  
 
 
CONCLUDING REMARKS 
 
Conceptual models are a strong simplification of the complex reality. A small number 
of boxes and flows represent the average behaviour of an infinite number of interacting 
reservoirs within a catchment. On the one hand, conceptual models are helpful 
simplifications of the natural complexity, but it is obvious that such representations 
always are far from reality. Fully distributed, physically based models may look more 
realistic than simple conceptual models. However, Beven (1989) pointed out that the 
physical basis of these models often is questionable, because formulations based on 
small-scale physics are applied on large scales which never can be expected to be as 
homogenous as the small scales. Given the heterogeneity of nature even the most 
rigorous mathematical description of a catchment must be viewed as a crude 
representation of reality (Grayson et al., 1992). On the other hand, the representation of 
different processes makes conceptual models appear physically realistic. However, 
unless the internal flow and state variables are checked against measured data, the 
function of such physical elements may rather provide enough degrees of freedom to fit 
runoff than to simulate the hydrological processes in a realistic way. In this regard, the 
model may simulate runoff correctly for the wrong reasons (Klemeš, 1983; 
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Mroczkowski et al., 1997).  
Further studies of runoff generation processes in the modelled basin and 

additional information, e.g., groundwater levels, distribution of soil moisture or 
saturated areas, remote sensing data, hydrochemical signals or runoff components 
determined by tracer techniques may help to disprove and reduce possible modelling 
concepts and variants (Mroczkowski et al., 1997). Furthermore, additional data may 
enhance the model performance, because the model can be validated against more than 
just discharge. This may also reduce the parameter uncertainty as demonstrated by, for 
instance, Kuczera & Mroczkowski (1998) for a hydrosalinity model using groundwater 
levels and the stream water salinity for calibration. However, additional data are often 
measured on scales much smaller than the modelling scale. Therefore, up- or 
downscaling is required before simulations can be compared with these data. This may 
cause new sources of errors and uncertainties. In addition, there is a need for multi-
objective calibration procedures capable of exploiting all the information contained in 
the different data. Yapo et al. (1998) recently suggested an algorithm for solving this 
multiple-objective optimisation problem. Another way to reduce parameter uncertainty 
may be to make more use of the information given in the hydrograph. This can be 
achieved by using various objective functions, which focus on different aspects of the 
hydrograph and the disagreement between simulated and observed runoff. 

In general, model predictions should be presented as ranges or probability 
distributions (Melching et al., 1990; Beven & Binley, 1992; Freer et al., 1996) rather 
than as single values. These ranges are caused by equally suitable model variants and 
the parameter uncertainty. The Monte Carlo procedure used in this study is a suitable 
tool to determine prediction ranges caused by the parameter uncertainty. It takes 
interdependencies between parameters implicitly into account as parameter sets instead 
of individual parameters are varied. The increased computer power makes this formerly 
time consuming method attractive even for operational use. It should be noted, however, 
that ranges may increase if other sources of uncertainty are considered. For instance, 
Kuczera & Williams (1992) found that the prediction interval increased largely when 
uncertainty in the areal precipitation during the calibration period was considered. 

To conclude, this study showed that when applying a conceptual hydrological 
model, uncertainties of the model structure and the model parameters, and their impacts 
on model predictions have to be considered. Future studies are needed to promote 
recommendations and procedures suitable for operational use. 
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FIGURE CAPTIONS 
Fig. 1 Schematic sketch of the HBV model structure (modified after Bergström, 1992). 
Fig. 2 Model variants with increasing degree of distributed model calculations. 
Fig. 3 Different model variants of the response routine: (a) one-box variant, (b) three-
box variant and (c) delay variant. 
Fig. 4 Results of two model parameters after 400 000 model runs, each point represents 
one model run: a) CFMAX as an example for a well defined parameter; b) FC as an 
example for a badly defined parameter.  
Fig. 5 Summary of the uncertainty of the model parameters, the standardised range 
refers to the ranges used for the Monte Carlo procedure (Table 1). 
Fig. 6 Model goodness versus number of elevation zones for one and two land use 
zones. 
Fig. 7 Model simulations when a synthetic rainfall sequence( SPS) (probability 
0.01 yr-1) was applied in spring after snowmelt with all very good parameter sets (Reff > 
0.860). 
Fig. 8 Range of peak discharge generated by synthetic rainfall sequences (SPS) of 
different probabilities applied in spring and autumn simulated with all very good (Reff > 
0.860) and good (Reff > 0.850) parameter sets. 
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TABLES 
Table 1 Parameters and their ranges used for the Monte Carlo simulations. 
Parameter Explanation Unit Minimum Maximum

Snow routine     
TT Threshold temperature °C -2 0.5 
CFMAX Degree-day factor mm °C-1 d-1 0.5 4 
SFCF Snowfall correction factor - 0.5 0.9 
CWH a) Water holding capacity - 0.1 0.1 
CFR a) Refreezing coefficient - 0.05 0.05 
Soil and evaporation routine     
FC Maximum SM mm 100 550 
LP SM threshold for reduction of 

evaporation 
- 0.3 1 

BETA Shape coefficient - 1 5 
CET Correction factor for potential 

evaporation 
°C-1 0 0.3 

Groundwater and Response 
routine 

    

K0 Recession coefficient d-1 0.1 0.5 
K1 Recession coefficient d-1 0.01 0.2 
K2 Recession coefficient d-1 0.00005 0.1 
UZL Threshold for K0-outflow mm 0 70 
PERC Maximal flow from upper to 

lower GW-box 
mm d-1 0 4 

Routing routine     
MAXBAS Routing, length of weighting 

function 
d 1 2.5 

a) 
This parameter was not varied. 

 
 
Table 2 Ranges of simulations (mm d-1) of different events with parameter sets and 
model variants with Reff > 0.860 during the calibration period. 
 
Scenario 

 
Observed value

Simulations using different 
parameter sets  

(model variant I) 

 Simulations using 
different model variants

  Minimum Maximum  Minimum Maximum

Peak discharge  
(SPS 0.01 yr-1spring a)) 

- 39.8 57.6  43.6 54.5 

Peak discharge  
(SPS 0.01yr-1 autumn b)) 

- 34.2 48.7  36.3 47.1 

       
Peak discharge (December 92) 27.4 21.1 27.5  22.2 26.4 
Mean discharge (rainless period) 1.12 0.84 1.46  0.80 1.45 
Mean discharge (week with  
minimum discharge) 

0.57 0.11 0.96  0.11 0.71 

a)
synthetic precipitation sequence (SPS) with a probability of 0.01 yr-1, applied in spring 

b)
synthetic precipitation sequence (SPS) with a probability of 0.01 yr-1, applied in autumn 
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FIGURES 
 
 

 
Fig. 1 Schematic sketch of the HBV model structure (modified after Bergström, 1992). 
 
Fig. 2 Model variants with increasing degree of distributed model calculations. 
Fig. 3 Different model variants of the response routine: (a) one-box variant, (b) three-
box variant and (c) delay variant. 
Fig. 4 Results of two model parameters after 400 000 model runs, each point represents 
one model run: a) CFMAX as an example for a well defined parameter; b) FC as an 
example for a badly defined parameter.  
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Fig. 5 Summary of the uncertainty of the model parameters, the standardised range 
refers to the ranges used for the Monte Carlo procedure (Table 1). 
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Fig. 6 Model goodness versus number of elevation zones for one and two land use 
zones. 
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Fig. 7 Model simulations when a synthetic rainfall sequence( SPS) (probability 
0.01 yr-1) was applied in spring after snowmelt with all very good parameter sets (Reff > 
0.860). 
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Fig. 8 Range of peak discharge generated by synthetic rainfall sequences (SPS) of 
different probabilities applied in spring and autumn simulated with all very good (Reff > 
0.860) and good (Reff > 0.850) parameter sets. 
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