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a b s t r a c t

This paper introduces the project on ‘Assessing the impact of land use change on hydrology by ensemble
modeling (LUCHEM)’ that aims at investigating the envelope of predictions on changes in hydrological
fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and
setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such
an intercomparison provides a valuable basis to investigate the effects of different model structures on
model predictions and paves the ground for the analysis of the performance of multi-model ensembles
and the reliability of the scenario predictions in companion papers. In this study, we applied a set of
10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in
land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in
model performance were observed with Nash–Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences
in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical
basis of the models. The models were applied with two sets of input data: an original and a homogenized
data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce
the variation between the models. Homogenization improved the comparability of model simulations
and resulted in a reduced average bias, although some variation in model data input remained. The effect
of the physical differences between models on the long-term water balance was mainly attributed to dif-
ferences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models
slightly outperformed the fully distributed and physically based models. This was attributed to the auto-
matic model calibration typically used for this type of models. Overall, however, we conclude that there
was no superior model if several measures of model performance are considered and that all models are
suitable to participate in further multi-model ensemble set-ups and land use change scenario
investigations.
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1. Introduction

1.1. Hydrological modeling of land use changes

Evaluating the impact of land use change on water and matter
fluxes is a major challenge in hydrological research. Changes in
land surface properties ultimately modify the energy and water ex-
change of the soil–vegetation–atmosphere system. A large number
of field studies exist where the influence of land use changes
(mainly afforestation and deforestation) is investigated in either
paired site studies or single catchment experiments (see the re-
views of [11,19,79]). Hydrological modeling of such changes has
been conducted since the 1970s [10,21,64,81]. One of the chal-
lenges in hydrological modeling is to account for the changes in
land surface properties by altering (at least some of) the model
parameters. Therefore, it is commonly argued that process-based
fully distributed models are best suited to simulate land use
change effects [8]. Since in most cases only parts of the land use
within a catchment changes, it is further argued that spatially dis-
tributed models depict these changes more precisely as compared
to lumped modeling approaches [9]. Following this philosophy,
several complex models have been developed that are capable of
simulating land use changes, such as DHSVM [75,88], MIKE-SHE
[3,70], RHESSys [5,6], SHETRAN ([32], a modeling system based
on the SHE model [1]), TAC-D [65], TOPLATS [33,67] and WASIM
[61,73]. However, these fully distributed process-based modeling
approaches are often criticized because an a priori estimation of
model parameters is difficult [9,32]. As an alternative, physically
based, semi-distributed models with less complex spatial repre-
sentation have been proposed. This group of models simulates all
hydrological processes within spatially non-explicit Hydrological
Response Units (HRU). Results for each HRU are lumped within
subcatchments and routed downstream. Models following this ap-
proach are SWAT [4,86], SWIM [50,51], PRMS [53], HYLUC [20] and
SLURP [48,49]. HRUs can be defined based on soil units, land use or
a combination of both. Although the impact of land use change is
not simulated with the same spatial resolution as in a fully distrib-
uted approach, these semi-distributed models still require a con-
siderable number of parameters that might be difficult to obtain.
A further simplification is achieved if hydrological fluxes are simu-
lated with the subcatchment scale as the smallest spatial unit.
Models such as HBV [7,54] and LASCAM [76] follow this concept.
Depending on the size of these subcatchments, the spatial resolu-
tion of the simulations is rather coarse. All model types described
so far utilize parameters that can be estimated directly from land
use data. At the lower end of complexity, conceptual lumped mod-
els such as the IHACRES [26,46] or the NAM [62] model can be
found. These models are characterized by a simple model structure
and a small number of conceptual model parameters. A change of
land use in a particular catchment is simulated by deducing
parameter values from other catchments that have similar land
use compositions as the one for which predictions are being made.
Most often, general catchment attributes, such as land use area and
catchment area, are used to regionalize model parameters. It is ar-
gued that data limitations in many catchments limit the applica-
tion of physically based models, and that conceptual models
provide a more appropriate alternative [27].

No matter what model type is chosen (conceptual vs. physically
based and lumped vs. spatially distributed), extrapolations to situ-
ations where no measured data exist (e.g. in ungauged basins),
where basin characteristics are not stationary (e.g. land use change
scenarios), or where boundary conditions are changing (e.g. cli-
mate change) are difficult to undertake [9,71]. This research topic
has attracted worldwide attention in the hydrological community
and led to the ongoing Predictions in Ungauged Basin (PUB) initia-

tive by the International Association of Hydrological Sciences
(IAHS) [75]. Climate change and its impact on hydrological fluxes
are of growing concern and have also resulted in a set of research
initiatives. These include the Global Energy and Water Cycle Exper-
iment (GEWEX) and the Program for Climate Model Diagnosis and
Intercomparison (PCMDI). No such research initiatives have been
developed to approach the problem of land use change and its im-
pact on hydrology.

Despite this growing knowledge, a high degree of uncertainty
remains in all model approaches. This global model uncertainty
stems from stochastic and structural model uncertainty. Stochastic
model uncertainty is introduced by measurement errors of model
input and output data, problems in the observation of physically
based model parameters, parameter estimates, and spatial as well
as temporal parameter heterogeneity. Numerous techniques to
investigate stochastic model uncertainty have been published in
the field of hydrology (e.g. [25,57,84] amongst many others). These
techniques are based on Monte Carlo simulations [31], Latin
Hypercube sampling [25], General Likelihood Uncertainty Estima-
tion GLUE [8], or the Shuffled Complex Evolution Metropolis
(SCEM-UA) technique [84].

The validity of a given model depends on the scientifically
acceptable explanation of the cause–effect relationships within
the model [72]. The structural model uncertainty results from un-
known, simplified, incomplete or incorrect process descriptions
within the model. Models are always abstractions of real systems.
Hence, not all processes can be included, may it be on purpose to
keep the model structure simple or due to the lack of knowledge.
Several approaches have been suggested recently to deal with this
structural model uncertainty by using a set of different models. A
simple method of combining several model structures (and further
evaluation techniques) was suggested in the model protocol by
Refsgaard et al. [71], Vrugt et al. [83] and Duan et al. [29] presented
approaches for the investigation of structural and stochastic model
uncertainty simultaneously. However, the basis for using such a set
of different models is a detailed evaluation of the performance of
individual models in a model intercomparison.

1.2. Model intercomparison and the concept of multi-model ensembles

A first step towards the evaluation of the effect of model struc-
ture on model output is a model intercomparison. Here, different
model structures are applied to the same data set under identical
boundary conditions. The simulation results are then interpreted
in the light of differences in the description of processes and their
spatial and temporal resolution. A range of model intercompari-
sons have been performed in the field of hydrology. Diekkrüger
et al. [28] compared the performance of 19 agro-ecosystem plot-
scale models for two sites in Germany. They concluded that the
model results differed substantially and that no superior model
type, either simple conceptual or complex process-based, could
be defined. A conceptual lumped, a semi-distributed and a distrib-
uted physically based hydrological model were applied to three
catchments in Zimbabwe by Refsgaard and Knudsen [69]. They
showed that the models performed equally well in the calibration
period. Under ungauged conditions (no data available for model
calibration; parameter values transferred from adjacent calibrated
catchments), the semi-distributed and fully distributed models
slightly outperformed the conceptual model. In land surface
hydrology, the Project for Intercomparison of Land surface Param-
eterization Schemes (PILPS) is an on-going model intercomparison
project in its fifth stage [39,40,63, and references therein]. The pro-
ject was established in 1992 and is designed to improve the param-
eterization of the continental surface, especially with respect to
water, energy, momentum and carbon exchanges with the atmo-
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sphere. The Model Parameter Estimation Experiment (MOPEX) is
aiming at developing techniques for a priori estimation of param-
eters in large scale hydrologic models and land surface parameter-
ization schemes [30]. The MOPEX strategy is based on a three-step
approach to relate model parameters to land surface characteris-
tics, including the demonstration of parameter transferability. A
change towards more sophisticated and comprehensive compari-
sons in distributed hydrological model predictions has recently
been achieved with the Distributed Model Intercomparison Project
(DMIP [77]) of the NOAA National Weather Service. DMIP sheds
light on the evaluation of distributed models against both a cali-
brated lumped model and observed streamflow [68,78]. Carpenter
and Georgakakos [22] built on the experience of DMIP and devel-
oped a probabilistic methodology to compare streamflow simula-
tions using lumped as well as distributed realizations of the
Sacramento soil moisture accounting model. They concluded that
the distributed approach outperformed the lumped approach with
superior performance for peak flow magnitude as well as timing.
Using the same Sacramento soil moisture accounting model in a
semi-distributed and lumped set-up, Boyle et al. [14] showed that
the main improvements in model performance of the semi-distrib-
uted approach were attributable to the spatial representation of
precipitation input and routing. This led to a better representation
of flood peaks and quick recession, but did not improve baseflow
simulations.

These intercomparison projects have shown that different mod-
el types with varying degrees of complexity have assets and draw-
backs when used for prediction. To increase the confidence in any
future model prediction, different model structures that were pre-
viously evaluated in a model intercomparison study can be com-
bined in an ensemble model. These so called multi-model
ensembles are commonly used in meteorology and climatology
to quantify the predictive uncertainty of weather forecasts and cli-
mate change simulations [59]. Recently, the envelope of such mul-
ti-model climate and weather predictions has been utilized to
drive hydrological models (e.g. [24,38,80]). However, this approach
focuses on the proper representation of input data uncertainty
rather than on the structural uncertainty of the hydrological mod-
els. Applications of multi-model ensembles in hydrological re-
search remain rather scarce. One of the first papers on this topic
was published by Shamseldim et al. [74], who used five black-
box-type rainfall–runoff models and two averaging schemes as
well as a neural network to combine model outputs. Within the
DMIP project, Georgakakos et al. [37] set up a multi-model ensem-
ble to improve flood forecasting. As a contribution to the PUB ef-
fort, McIntyre et al. [56] applied a model ensemble to a set of
127 ungauged or poorly gauged UK catchments. New tools have re-
cently been proposed to improve the combination of models into a
multi-model ensemble, including deterministic (model average
and median, trimmed means, linear regression, artificial neural
networks; see for example [37,74]) as well as probabilistic tech-
niques (Bayesian model averaging, Kalman filtering, Brier skill
score, see for example [2,55,66,85]).

1.3. Motivation for the LUCHEM project

In the framework of the Collaborative Research Centre 299
‘‘Land use concepts for peripheral regions” spatially differentiated
land use scenarios have been developed for the Dill catchment,
Germany. The land use scenarios have been calculated by the use
of the Prognosis of Landuse (ProLand) model. ProLand is an agro-
economic model that predicts feasible land use systems based on
political, economic, social and ecological conditions [52,87]. Sev-
eral land use scenarios have been evaluated with respect to ecolog-
ical and economic landscape services [12,16,18,34–36,58,86]. The
land use scenarios analyzed in the present evaluation are based

on an investigation of the economic and ecological effects of land
consolidation (see Huisman et al. [43], this issue, for a detailed
description).

As part of these evaluations, the SWAT model [4] was used to
calculate the changes in the hydrological cycle, also considering
the stochastic uncertainty in the model predictions [17,31,44].
For all of the land use scenarios investigated, it was concluded that
the predicted changes in discharge, groundwater recharge or sur-
face runoff were small. Obviously, the question remained whether
the minor changes in the hydrological cycle predicted by SWAT are
realistic, or a result of an incomplete or even wrong model struc-
ture. To address this question, the LUCHEM (‘Assessing the impact
of land use change on hydrology by ensemble modeling’) project
was initiated in which a multi-model ensemble was applied to
the current land use and a set of land use scenarios. The results
are presented in four companion papers.

This first paper outlines the motivation and setup of the LU-
CHEM project. We first present the experimental design of LU-
CHEM, followed by a summary of the results of the model
intercomparison for the current land use. To address the effect of
model input data, we investigate two different model set ups.
We conclude with determining the differences in model perfor-
mance depending on model complexity, and finally, highlight the
impact of model structure on model output. In the second paper
by Viney et al. [82] (this issue), different deterministic and condi-
tional ensemble techniques are investigated with respect to model
output and performance. Typically, the predictions of these multi-
model ensembles are more accurate than any single model, proba-
bly because model structural error is partly removed by combining
models. In the third paper by Huisman et al. [43] (this issue), the
predictions for the land use scenarios are compared for the individ-
ual ensemble members. In addition, they applied the most promis-
ing deterministic ensemble methods of Viney et al. [82] (this issue)
to the land use scenarios and quantified the uncertainty in the sce-
nario predictions using the model ensemble. Finally, Bormann et al.
[13] (this issue) analyzed the effect of spatial resolution and distri-
bution of model input data on model output for the current land
use and the land use change scenarios. For this, spatial input data
were systematically aggregated and redistributed (randomly and
based on topography). Sensitive grid size aggregation levels were
identified.

2. Study area and available data

The Dill catchment is located in the Lahn-Dill low mountainous
range approximately 70 km NNW of Frankfurt, Germany. Its catch-
ment area is 693 km2 with altitudes ranging from 155 to 674 m
above sea level (Figs. 1 and 3). The eastern part of the Westerwald,
extending into the western area of the Lahn-Dill low mountainous
region is mainly characterized by tablelands of tertiary basalts at
heights around 500–600 m above sea level. The average slope is
approximately 14%. A 25 m digital elevation model (DEM) is avail-
able for watershed delineation [41].

During the Pleistocene, Hessian low mountain ranges were sub-
ject to periglacial processes. Solifluction mixed weathering debris
with loess. Therefore, periglacial layers strongly influenced by the
underlying geologic substrate are the main soil parent material
within the area. Due to the heterogeneous nature of these perigla-
cial layers, the pattern of soil types is complex. However, more
than a third of all soil types in the Dill catchment belong to the
general class of cambisols [45], equivalent to inceptisols in the
USDA soil taxonomy. These soils cover more than 64% of the total
catchment area (Table 1). Soil digital data is provided on the scale
of 1:50,000 for the catchment [42]. Soil physical properties for 149
soil types include information on soil depth, available water con-
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tent (AWC), saturated conductivity (Ksat), soil albedo for visible
light, rock fragments and clay/silt/sand content. Soil digital data
are available on the same 25 m grid as the DEM.

Land use information was derived from a multi-temporal set of
Landsat TM 5 images taken in 1994 and 1995. Similar to the other
spatial data, land use information was scaled to a 25 m grid size.
The catchment is characterized by a heterogeneous small-scale
land use pattern with more than 50% of the area covered by forests
and 20% by pasture (Table 1 and Fig. 2). Cropland is mainly located
in the eastern part of the catchment. A crop rotation composed of
winter rape, winter barley, and oats is typical for the research area.
Fallow land makes up almost 10% of the area, with up to 40% in cer-
tain regions, and is hence more abundant than anywhere else in
Germany. Grassland use is equally distributed between dairy and
extensive livestock farming (suckler cows, hay production, recrea-
tional horse husbandry). Deciduous forests are mainly composed of
Quercus robur, Quercus petrea (oak) and Fagus sylvatica (beech),

whereas Picea abies (spruce) and Pinus sylvestris (Scots pine) dom-
inate coniferous forests. Measured plant parameters were not
available and were, therefore, obtained from literature [15].

Mean annual precipitation ranges between 700 and 1300 mm
depending on elevation and longitude. Precipitation is highest in
the western and northern part of the catchment, whereas substan-
tially less precipitation falls in the eastern part. Areas with low pre-
cipitation have a summer-dominated precipitation pattern,
whereas areas with high precipitation are characterized by win-
ter-dominated precipitation patterns of westerly low-pressure sys-
tems. The contribution of snow to total precipitation is estimated
to be less than 5%. Average annual mean temperature is 8 �C. Cli-
matic daily data, provided by the German weather service
(DWD), are available for the period of 1980–1998. Data include
precipitation [mm], wind speed [m s�1], global radiation
[MJ m�2 d�1], air temperature [�C] and relative humidity [%].
Whereas precipitation was recorded at 16 locations within or close
to the catchment, spatial information for the remaining climatic
variables is limited to two locations (Fig. 3). Mean annual precipi-
tation for the gauges is given in Table 2.

Besides daily discharge data at the Dill catchment outlet (gaug-
ing station Asslar), data from three additional gauging stations
were available: gauging station Herbornseelbach for the Aar catch-
ment (133.4 km2), gauging station Dillenburg for the Dietzhölze
(Dtz) catchment (80.0 km2) and gauging station Haiger for the
Obere Dill (Obd) catchment (62.1 km2) (Fig. 1).

3. Discharge characteristics in the Dill river catchment

The mean annual discharge of the Dill river catchment for the
period of investigation is 437 mm with a mean annual precipita-
tion of approximately 900 mm. Under normal climatic conditions,
discharge peaks in the winter months (Fig. 4). Temporal variation
of discharge for the subcatchments is similar to the Dill. Based
on hydrogeological investigations and baseflow separation pub-
lished elsewhere [47], the portion of baseflow contribution to dis-
charge is minor in the order of 10–20%. The contribution of surface
runoff is even less and assumed to be <10%. Most of the discharge
of the Dill is delivered by interflow through the shallow soils.

For a comparison of measured and simulated flow series a sta-
tistical separation into three discharge (Q) components (slow,
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Fig. 1. Location (a) and gauging stations (b) of the Dill river catchment.

Table 1
Characteristics of the Dill catchment.

Annual rainfalla [mm] 907.3
Annual dischargeb [mm] 437.7
Drainage area [km2] 693.0

Land use [% of watershed area]
Cropland [%] 6.5
Pasture [%] 20.6
Fallow [%] 9.1
Urban [%] 9.2
Deciduous forest [%] 29.5
Coniferous forest [%] 24.8
Water [%] 0.3

Soil typec [% of watershed area]
Cambisol [%] 64.2
Planosol [%] 13.9
Gleysol [%] 5.3
Fluvisol [%] 4.1
Regosol [%] 1.4
Luvisol [%] 0.5
Others [%] 10.6

a Arithmetic annual mean (1983–1998) calculated on the basis of the 16 rain
gauging stations shown in Fig. 3.

b Arithmetic mean calculated for the overall model period 1983–1998.
c Soil type classification according to World Reference Base for Soil Resources

[45].

132 L. Breuer et al. / Advances in Water Resources 32 (2009) 129–146



Author's personal copy

intermediate and quick flow) was done by the WETSPRO procedure
presented by Willems [89] that is built on a generalized version of
the numerical digital filter developed by Chapman [23]. The filter is
based on the assumption of exponential recessions for the dis-
charge components with constant recessions for different slow
flow periods. The recession constants were derived by analysis of
the slope of the linear recession of the flow during long dry periods
in a logQ vs. time plot. The slope was estimated for different dry
periods in the flow series. The average value for the Dill river for
slow flow equals �30 d and is similar for the subcatchments. For
the intermediate flow recession constant, a value of �3 d was
estimated.

To avoid serial dependence in the model residuals to be used in
the statistical analysis of slow flows and quick flows (i.e. surface
runoff and interflow), the daily discharge series were divided into

independent quick (discharge maxima) and slow flow (discharge
minima) periods. For this, peak discharges (also referred to as peak
over threshold values), were extracted from the discharge time ser-
ies using independency criteria based on the recession constant.
Consecutive discharge peaks were considered to be independent
when (1) the inter-event time exceeded the recession constants
of the quick flow components and (2) the minimum inter-event
discharge approached the slow flow value (Fig. 5). The slow flow
component was derived when quick flow components decreased
to zero during the dry periods. In a second step, independent slow
flow periods were selected as well. The slow flow periods were
separated in a similar way as the quick flow periods. Slow flow
recession periods were considered independent when the slow
flow was reduced to a very low value at the end of a given period
and was followed by a significant increase in the slow flow before
the next recession period started (Fig. 5). This procedure was also
applied to define discharge minima and maxima for the simulated
discharges by the 10 models that participated in the model
intercomparison.

From a detailed recession analysis (data not shown here), it be-
came clear that the exponential recession stops below a specific
slow flow value. This indicates that the lowest discharge values
most probably do not originate from rainfall–runoff processes.
For this reason, an external inflow was assumed that originates
from the effluent of wastewater treatment plants and industrial
discharges. The estimate of the external inflow for the entire Dill
catchment is 0.02 mm d�1 (0.16 m3 s�1).

4. Project design

4.1. Participants of the LUCHEM project

The selection of models which were invited to participate in the
model ensemble was based on a search in Web of Science� [access
date 31.08.2004]. We only selected models that had been applied
in studies dealing with land use change effects on hydrological pro-
cesses in at least two different catchments. Out of 12 groups in-
vited, 10 groups decided to participate in the model ensemble
workshop in March 2005 (Table 3). All necessary data for the mod-
el setup were provided to the model groups before the workshop.
General characteristics of the models and details of their applica-
tion in the Dill catchment are given in Table 4. The smallest unit
considered within a model ranged from 0.01 km2 to the size of
the gauged subcatchments.

A ranking of the complexity of the models was based on the
number of model input parameters (i.e. time invariant characteris-
tics such as soil and vegetation properties), calibrated parameters
and the spatial resolution given as spatial computational areas (Ta-
ble 5). Spatial computational areas are equivalent to pixels of the
distributed models and to HRUs in the case of the semi-distributed
models. The fully distributed models formed the group of the most
complex models. Within this group, TOPLATS and WASIM were
ranked lower than MIKE-SHE and DHSVM because these models
were used without an explicit groundwater modeling scheme.
The second and third group contained the semi-distributed models
and the lumped models. Within the group of semi-distributed
models, the models were further ranked by the number of HRUs
and the number of parameters calibrated for the Dill catchment.
Here the SWAT model is the most complex one as it has an internal
dynamic plant growth module that is very parameter intensive.

4.2. Modeling instructions

Meteorological forcing data and observed streamflow data cov-
ered the period from 01.01.1980 to 31.12.1998. The period from

Fig. 2. Land use distribution in the Dill catchment as derived from a multi-temporal
composite of three Landsat TM 5 images from 1994 to 1995 (pixel size 25 m). A
three-step procedure has been applied using a semi-automized image classification
scheme that consisted of raw data pre-processing, hierarchical classification of large
landscape units and a sub-pixel classification for small heterogeneous land surfaces.
Sub-pixel classification was based on a spectral mixture analysis, and was necessary
to gain land use information on the very small structured agricultural landscape
and its high portion of fallow land with secondary vegetation.
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01.01.1980 to 31.12.1982 was defined as model warm-up period
and not used in the evaluation of model results. All modeling
groups were instructed to use the period from 01.01.1983 to
31.12.1989 for model calibration and the period from 01.01.1990
to 31.12.1998 for model validation. It should be noted that the
mean annual precipitation in the calibration period is lower than
the precipitation in the validation period for almost all precipita-
tion stations (Table 2).

Streamflow data were provided for the Dill catchment and three
of its subcatchments, the Aar, the Dietzhölze and the Obere Dill.
Participants were asked to provide results for these four gauged
catchments. Two sets of simulations were performed for the actual
land use distribution. The first set was based on the simulations all
participants provided prior to the modeling workshop (further re-
ferred to as the original set of simulations). During the workshop, it
was decided that differences in model results were difficult to
interpret because (1) the provided input data were interpreted dif-
ferently (e.g. different annual courses of LAI from provided maxi-
mum LAI) and (2) interpolation of precipitation and other climate
variables varied considerably between the models. Consequently,
it was decided that all models should also provide results for a
homogenized set of data.

In an attempt to homogenize the precipitation input data, each
pixel of the DEM (25 � 25 m) was allocated to a precipitation sta-
tion based on nearest neighborhood. Apart from the fully distrib-
uted models, all models had to further process this precipitation
data. Because of this, differences in precipitation input remained
even in the homogenized data set. To homogenize the simulation
of plant development, monthly average values of leaf area index
(LAI) were calculated by a simplified EPIC approach [90] using
average daily weather data for each land use type shown in
Fig. 2. To homogenize the remaining climatic variables, it was
decided to only use the climate station data of Dillenburg.

We argue that the type and amount of model calibration is part
of the model philosophy. Hence, no calibration procedure was pre-
scribed for the different models. Table 4 shows that the process-
based fully distributed models were generally calibrated manually
(e.g. DHSVM, MIKE-SHE). Here, visual hydrograph evaluation was
preferred over the use of statistical evaluation measures. Most of
the more conceptual models were automatically calibrated using
an objective function based on squared residuals (e.g. root mean
squared error [RMSE] or Nash–Sutcliffe Efficiency [NSE] [60]).
The HBV, TOPLATS and IHACRES model were calibrated by apply-
ing two or more different objective functions (Table 4).

Fig. 3. Digital elevation model and location of gauging and meteorological stations of the Dill catchment (pixel size 25 m).

Table 2
Mean annual precipitation for the calibration and validation period. Station numbers refer to Fig. 3.

Station # Precipitation gauging station Height a.s.l. [m] Precipitation calibration
period 1983–1989 [mm a�1]

Precipitation validation
period 1989–1998 [mm a�1]

1 Driedorf 482 1221.6 1307.1
2 Haiger 290 890.6 912.3
3 Haiger-Dillbrecht 340 1050.8 1069.2
4 Dillenburg 277 814.6 814.6
5 Herborn 237 828.8 872.9
6 Greifenstein 430 963.1 969.0
7 Dietzhölze-Mandeln 376 1170.5 1206.0
8 Mittenaar-Bicken 240 755.8 782.8
9 Eschenburg-Hirzenhain 530 1076.8 1046.3

10 Siegbach-Eisemroth 330 860.2 860.6
11 Aßlar 200 810.0 848.9
12 Steffenberg-Quotshausen 338 907.6 902.1
13 Hohenaar-Erda 306 772.9 803.7
14 Gladenbach 270 853.2 859.3
15 Wettenberg-Krofdorf 235 694.2 737.7
16 Coelbe 187 704.6 692.2
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Most models were only calibrated to observed streamflow at
the outlet of the Dill catchment (gauging station Asslar). Stream-
flow data for the remaining interior gauged subcatchments of the
Obere Dill, Aar and Dietzhölze were only used in the calibration
process of the IHACRES and LASCAM model, whereby the first
model was calibrated independently to the single subcatchments
and the latter one followed a multi-criteria calibration scheme
for all subcatchments concurrently to yield a single catchment-
wide parameter set. Except from the MIKE-SHE model, all partici-
pants provided results for the original and homogenized data set,
for all catchments and land use scenarios.

4.3. Evaluation measures

The following statistical measures were used for model calibra-
tion and model evaluation. In the following equations, N is the total
number of measurements, S is simulated discharge, O is observed
discharge and i is a counter.

(a) Root mean squared error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðSi � OiÞ2

N

s
ð1Þ

The RMSE provides information on the agreement between mea-
sured and simulated data, whereby negative and positive values
do not cancel out each other. Large deviations are emphasized.

(b) Bias

Bias ¼
XN

i¼1

ðSi � OiÞ ð2Þ

(c) Absolute percent bias (PB%)

PB% ¼
PN

i¼1ðSi � OiÞ
��� ���PN

i¼1Oi

� 100 ð3Þ

Absolute percent bias is a measure for total volume differences be-
tween measured and observed data. It was used to evaluate the
long-term performance of the model simulations.
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Fig. 4. Daily discharge [m3 s�1] of the Dill river and its tributaries Aar, Dietzhölze
and the Obere Dill, period 01.11.1991–30.04.1992. The insert depicts log-scaled
discharge to better represent low flow conditions.

Fig. 5. Peak separation of the Dill river daily discharge series in nearly independent
quick flow and slow flow periods (period 01.01.1986–31.12.1987). Orange lines
indicate the start of a quick flow period, where rain storms lead to nearly
independent periods if separated by a time span longer than the recession constant
of the quick runoff process. Blue lines indicate slow flow periods that are
characterized by longer independence times. They originate from different storms
when baseflow is reduced to low values at the end of a given period, followed by a
significant increase in baseflow before the next recession period starts. Note that
blue lines mask additional orange lines. (For interpretation of the references in color
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Participating modeling groups in the LUCHEM model ensemble.

Model Reference Represented by Institution

DHSVM [88] Jordan Lanini, Dennis Lettenmaier Department of Civil and Environmental Engineering, University of Washington, USA
HBV [7] Jan Seibert Environmental Assessment, SLU Uppsala, Sweden

Göran Lindstrom SMHI, Norrköping, Sweden
IHACRES [26] Barry Croke, Tony Jakeman The Fenner School of Environment and Society, The Australian National University, Australia
LASCAM [76] Neil Viney CSIRO Land and Water, Wembley, Australia

Murugesu Sivapalan Center for Water Research, University of Western Australia, Australia
MIKE-SHE [70] Lode Hubrechts Afdeling Ecologie en Water, Lisec NV, Genk

Patrick Willems Hydraulics Laboratory, Katholieke Universiteit Leuven, Belgium
PRMS [53] George Leavesley Denver Federal Center, USGS Denver, USA
SLURP [49] Geoffrey Kite Hydrologic Solutions, Pantymwyn, Flintshire, UK
SWAT [4] Lutz Breuer, Johan A. Huisman, Hans-Georg

Frede
Institute for Landscape Ecology and Resources Management, Justus-Liebig-Universität,
Gießen, Germany

TOPLATS [33] Helge Bormann Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg,
Germany

WASIM [73] Thomas Gräff, Axel Bronstert Institute for Geoecology, University of Potsdam, Germany

L. Breuer et al. / Advances in Water Resources 32 (2009) 129–146 135



Author's personal copy

(d) Nash–Sutcliffe Efficiency (NSE)

NSE ¼ 1�
PN

i¼1ðSi � OiÞ2PN
i¼1ðSi � SÞ2

ð4Þ

Values for Nash–Sutcliffe Efficiency [60] vary from negative infinity
to 1.0. Values close to 1.0 indicate good model performance,
whereas negative values indicate that the average of the observed
data is a better predictor than the model.

These four measures together with the mean and standard devi-
ation of measured and simulated streamflow were calculated for
the calibration, validation and the entire modeling period for all
models.

5. Model results for the current land use distribution

In the following, we will present and compare the results for the
simulations of water fluxes for the Dill catchment and its tributar-
ies in detail. Results will be shown for the suite of 10 hydrological

models given in Table 4. The variation of model results can gener-
ally be attributed to three major effects: (1) the effect of model in-
put data, (2) the effect of model calibration, and (3) the physical
basis of the models.

5.1. Effects of model input data

In order to better compare the effects of model structure on
model output, two sets of model input data were provided as de-
scribed above. A homogenization of model input data was con-
ducted to reduce variation between models with respect to LAI,
precipitation and further climatic data. Homogenization of the
model input data resulted in a reduction of precipitation input
for almost all models except for WASIM and LASCAM (Fig. 6).
The span of annual precipitation across all models was reduced
from 96 to 37 mm, but considerable differences between precipita-
tion inputs still remained. These differences can be attributed to
the spatial resolution of the different model units and the alloca-
tion of precipitation to these units. HBV and DHSVM calculated a
reduction of mean annual precipitation by �50 mm. Both models

Table 4
General model characteristics.

Model Spatial
resolution

Soil
horizons

Precipitation
interpolation

ETpot Dynamic
plant
growth/
crop
rotation

Calibration/objective function Other info

DHSVM 100 m 3 Inverse distance Penman–
Monteith

No/no Manual/no Minimum channel source area 10 ha,
saturation access

MIKE-
SHE

200 m Depending
on soil
type

Nearest neighbour Penman–
Monteith

No/no Manual/R2 P|Si � Oi| LAI and root development calculated
with internal database, aggregation to
25 different soil types covering 90% of
the area

TOPLATS 100 m 2 Nearest neighbor Penman–
Monteith

No/no Manual/NSE, bias

WASIM 200 m Conceptual Inverse distance Penman–
Monteith

No/no Manual/NSE

SWAT 52
subcatchments

2–5
(depending
on soil
type)

Nearest neighbour Penman–
Monteith

Simplified
EPIC crop
growth
model/yes

Automatic/NSE

PRMS 25
subcatchments

2 Nearest neighbour Modified
Jensen–Haise
parameters f

No/no Automatic/
P

|Si � Oi| 1 non-linear subsurface reservoir, 1
linear groundwater reservoir

SLURP 39
subcatchments

2 (based on
field
capacity)

Nearest neighbor
for each grid cell,
aggregated to
subcatchment/
land cover unit

Penman–
Monteith

No/yes
(with
multi-
year LAI)

Manual/NSE Used estimated LAImax distributed over
the year instead of remote sensed LAI;
used dominant soil type for each land
cover; pedotransfer functions applied to
calculate soil moisture and field
capacity; separate vertical water
balance for each land cover

HBV 10
subcatchments

1 (no real
soil depth
approach)

Geometrically
weighted for each
subcatchment

Penman–
Monteith,
temperature
driven
monthly
factors

No/no Automatic/NSE, bias 100 m elevation intervals, percentage of
elevation land use zones in each
subcatchment, 5 land use classes,
spatial distributed soil water storage by
using AWC for each elevation and land
use zone in each subcatchment; used
additional interception routine

LASCAM 29
subcatchments

No Inverse distance Radiation
based
estimate
assuming
linear trend
with latitude

No/
dynamic
vegetation
change

Automatic/NSE Mean annual and monthly scaling factor
for LAI, average LAI for each
subcatchment

IHACRES 4
subcatchments

No Weight Thiessen
polygon

Conceptual,
based on daily
Tmax

No/no Linear module: automatic/simple
refined instrumental variable approach
non-linear module: manual/NSE, NSE of
square root of flow, bias, arithmetic
relative parameter error, lag I
correlation coefficients between model
error and observed stream flow and
estimated effective rainfall

No distinction of grass and crops, only
between open and closed vegetation, set
linear module parameters using
baseflow filters

HRU = Hydrologic Response Unit; NSE = Nash–Sutcliffe Efficiency [60].
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compensated this change mainly by a decrease in actual evapo-
transpiration (ET) (Fig. 6). Actual ET was also reduced for all but
the WASIM model which showed a slight increase. The reaction
to changing model input data can also be seen in the mean annual
discharge (Fig. 7). The highest increase in discharge was found for
the DHSVM model, followed by LASCAM. In contrast to this in-
crease, discharge in the WASIM and TOPLATS models decreased
by 20 and 10 mm/year, respectively. Overall, the homogenization
procedure changed precipitation inputs, calculated as the mean
of all models, from 929 mm for the original data set to 920 mm
for the homogenized data set during the validation period. After
homogenization, the standard deviation of mean annual precipita-
tion was distinctly lower (31 mm vs. 11 mm). Runoff coefficients
remained stable for both input data schemes across all models
and varied by up to 0.03, except for the DHSVM model that showed
an increase of the runoff coefficient from 0.42 (original data) to

0.51 (homogenized data). The latter value is more similar to all
other models and we conclude that this also reflects the value of
homogenizing the input data.

Although the differences for the original and homogenized data
sets are in some cases substantial, modeling results with respect
to the NSE are similar for both approaches (Fig. 8). NSE for the Dill
catchment for the calibration period varied between 0.59 and
0.92, with the highest efficiencies simulated by the more concep-
tual models such as LASCAM or HBV. Absolute percent bias was
reasonably low, except for the DHSVM model. A similar pattern
of NSE between 0.63 and 0.91 was found for the Obere Dill,
although the percent bias for SWAT, DHSVM and WASIM were
higher at values around 10–20%. Simulations for the Dietzhölze
subcatchment were characterized by somewhat lower NSEs be-
tween 0.53 and 0.87. The reason for this is that precipitation
gauging stations in the study area are located in the lower valleys

Table 5
Ranking of model complexity of the LUCHEM model ensemble.

Model Available model parameters # calibrated parameters # spatial computational areas Rankinga

Distributed # of pixels
DHSVM >100 3b 70.000 1
MIKE-SHE >100 7 17.500 1
TOPLATS >100 3 70.000 2c

WASIM >100 30 17.500 2c

Semi-distributed # of HRU
SWAT >100 6b 795 3
PRMS 50 5 312 4
SLURP 36 (6 per land cover) 8 252 4
HBV 10–20 10 100 5
LASCAM 30 22 29 6

Lumped # of subcatchments
IHACRES 6 5 4 7

a Ranking was agreed upon by all participants of the model ensemble based on subjective perception of each model.
b Soil parameters, ratio defined for all soils.
c No explicit groundwater modeling structure applied.

Fig. 6. Effect of homogenization of model input data on mean annual precipitation vs. actual evapotranspiration, calibration period 1983–1989.
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(see also Table 2 and Fig. 3), which introduces a bias in the mean
annual precipitation because of the underrepresented higher pre-
cipitation sums on the hills. A distinctly different pattern of the
percent bias between the homogenized and original data ap-
proach was found for the Aar subcatchment (Fig. 8). Here, the per-
cent bias for several models such as TOPLATS and WASIM

considerably decreased during the homogenization of the input
data, whereas the percent bias of DHSVM and SLURP substantially
increased from 5% and 11% to 19%, respectively. NSEs were com-
parable to the Obere Dill. DHSVM was the only model where the
percent bias deteriorated for all subcatchments during the
homogenization.

Fig. 7. Effect of homogenization of model input data on mean annual precipitation vs. discharge, calibration period 1983–1989.

Fig. 8. Comparison of the Nash–Sutcliffe Efficiency and the change in absolute bias of the model ensemble members for the original and homogenized model approach for the
Dill catchment and the three subcatchments Aar, Dietzhölze and Obere Dill, calibration period 1983–1989.
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Overall, we conclude that homogenization of model input data
improved the comparability of model structures and reduced the
differences in model results due to different ways of interpolating
precipitation and simulating plant development. Therefore, the
homogenized data set is used in the remaining part of this paper,
as well as in the land use scenario analyses presented by Huisman
et al. [43].

5.2. Effect of calibration

Results for the calibration and validation period for all models
using the homogenized data set are given in Table 6. NSE for dis-

charge varied between 0.65 and 0.92 for the calibration period
and between 0.61 and 0.92 for the validation period. Some models
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Fig. 9. Prediction of daily discharge for the Dill catchment of the model ensemble
members using homogenized input data for a dry year (period 01.11.1991–
30.10.1992) and a wet year (period 01.11.1994–30.10.1995).

Table 6
General statistics for the Dill catchment (calibration period 01.01.1983–31.12.1989 and validation period 01.01.1990–31.12.1998) of the model ensemble members for the
homogenized model approach of the Dill catchment.

Model Mean [mm] Sd [mm] RMSE [mm] Bias [mm] Percent bias [%] NSE [–]

Calibration Validation Calibration Validation Calibration Validation Calibration Validation Calibration Validation Calibration Validation

DHSVM 1.52 1.33 1.64 1.66 0.922 0.629 0.191 0.233 14.4 21.3 0.76 0.85
MIKE-SHE 1.37 1.25 1.71 1.66 1.118 0.839 0.043 0.152 3.2 13.9 0.65 0.73
TOPLATS 1.32 1.07 2.04 1.80 1.105 1.011 �0.012 �0.030 0.9 2.7 0.66 0.61
WASIM 1.35 1.07 1.97 1.92 1.026 0.821 0.021 �0.028 1.6 2.5 0.70 0.74
SWAT 1.41 1.20 1.85 1.71 0.994 0.845 0.075 0.106 5.6 9.7 0.72 0.73
PRMS 1.32 1.12 1.75 1.74 0.742 0.561 �0.014 0.028 1.0 2.6 0.84 0.88
SLURP 1.37 1.27 1.33 1.31 1.106 0.876 0.041 0.172 3.1 15.7 0.65 0.71
HBV 1.33 1.16 1.87 1.67 0.540 0.444 �0.002 0.065 0.2 6.0 0.92 0.92
LASCAM 1.28 1.14 1.86 1.73 0.606 0.538 �0.049 0.050 3.7 4.5 0.90 0.89
IHACRES 1.32 1.16 1.58 1.54 0.806 0.595 �0.014 0.062 1.0 5.7 0.82 0.87

Observed 1.33 1.1 1.88 1.62 – – – – – – – –
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Fig. 10. Cumulative difference between observed and simulated daily discharge for
the overall model period (1983–1998) for the Dill catchment and the three
subcatchments Aar, Dietzhölze and Obere Dill (homogenized input data).
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such as DHSVM, SLURP or MIKE-SHE showed an improvement for
NSE going from the calibration to the validation period. This can
be partly attributed to a drastic flooding event in the calibration
period in February 1984 that made it difficult for these models to
obtain better efficiencies during calibration.

For a comparison of model behavior for dry and wet conditions,
daily discharge was plotted in Fig. 9 for the hydrologic years
(01.11–31.10) 1991/1992 and 1994/1995, respectively. Simula-
tions for dry conditions scatter more as compared to simulations
for wet conditions. Especially, the SLURP and the MIKE-SHE models
overestimated the low flows during November–December 1991
and June–October 1992. The WASIM and TOPLATS models both
had problems in simulating discharge in late 1991 and 1994, where
they underestimated discharge. Overall, TOPLATS simulated lowest
and SLURP and DHSVM predicted highest discharge for the current
land use using the homogenized data set.

The evaluation of the bias for all models for the entire simula-
tion period showed that some models overestimated discharge
substantially (e.g. DHSVM, TOPLATS and SWAT, see Fig. 10). Bias
was lowest for the Dill catchment, which is due to the fact that
models were calibrated to the discharge at the gauging station Ass-
lar. In many cases, the more complex and fully distributed models
showed a higher bias when applied to the subcatchments, such as
DHSVM, SWAT and TOPLATS in the Aar, or DHSVM, SLURP and

MIKE-SHE in the Dietzhölze and DHSVM and SWAT in the Obere
Dill.

A comparison of the observed and predicted flow duration
curve is shown in Fig. 11. Most models performed well in the range
of discharges between 0.5 and 8 mm�1 (4–64 m3 s�1), correspond-
ing approximately to the 5 and 70 percentiles of flows. Observed
high flows are bounded by the envelope of model predictions.
The SLURP model revealed a substantial underestimation of high
flows. However, even larger discrepancies of observed and pre-
dicted flows were found for low flow conditions, a fact that is
attributable to the focus on calibration of peak events by using,
for example, NSE or RSME as objective functions (Table 4). Almost
all models underestimated flow minima. Only the DHSVM, HBV
and IHACRES models seemed to provide acceptable low flow pre-
dictions. Nevertheless, a closer look to discharge maxima and min-
ima is necessary to test the behavior of the models under extreme
conditions.

Fig. 12 shows observed and simulated discharge maxima for the
10 models. In general, the fully distributed models such as TOPL-
ATS, MIKE-SHE and WASIM were less accurate than the more con-
ceptual models such as HBV or LASCAM (Table 7). The better fitting
of peaks for the conceptual models can partly be explained by the
fact that they were more effectively calibrated using automatic cal-
ibration techniques, whereas the distributed physically based
models were typically manually calibrated (Table 4). The models
SLURP, WASIM and MIKE-SHE underestimated discharge maxima
in many situations, whereas substantial under as well as overesti-
mation was obvious for the TOPLATS model. The IHACRES model
had a tendency to overestimate low discharge maxima and to
underestimate high peaks. An underestimation of high peaks was
also found for the DHSVM model and to a lesser extent for the
PRMS model. SWAT and LASCAM, shortly followed by HBV, were
the only models that did not show this underestimation of extreme
flow conditions.

Observed and simulated low flow discharges were also ana-
lyzed (Fig. 13 and Table 7). Several models such as SWAT, LASCAM,
SLURP and MIKE-SHE had considerable problems in simulating dis-
charge minima, in that they all underestimated low flows. This can
partially be explained by the 0.02 mm d�1 external inflow that
some of the LUCHEM models considered whilst others such as
SWAT and LASCAM did not. Most rainfall–runoff models asymptot-
ically reduced towards zero discharge during the long dry periods.
Hence, they were not able to produce a constant low flow value.
Apart from an underestimation of the lowest discharges, the mod-
els HBV and DHSVM overestimated low flow discharge in many sit-
uations, which could not be observed when analyzing the flow
duration curves depicted in Fig. 11 alone. From visual inspection,
IHACRES and PRMS performed best during low flows. We acknowl-
edge that some models perform better to some parts of the hydro-
graph than others do and have reasons to believe that better
predictions could be made by combining different models for cer-
tain parts of the hydrograph. This was further investigated in the
companion paper by Viney et al. [82], where different conditional
multi-model ensembles that explicitly considered low flows and
high flows, seasonality as well as rising and falling flows, were
composed.

From the above, it is clear that we attribute part of the differ-
ences between models to differences in calibration practice. In
the next section, we will revisit the results presented here and dis-
cuss them in the light of the physical differences between the mod-
els. One could argue that the way of model calibration is not an
intrinsic part of the structure of a model, and that if all models
had used the same calibration routines, the effects of model struc-
ture, i.e. the physical description of how water fluxes are simu-
lated, could have been analyzed more straightforwardly.
However, we feel that the way of model calibration is part of the

Table 7
Root mean squared error (RMSE) for peak flow maxima and low flow minima, Dill
catchment, homogenized data approach, period 01.01.1983–31.12.1998.

Minima [mm] Maxima [mm]

DHSVM 0.32 27.32
MIKE-SHE 0.75 27.99
TOPLATS 0.77 41.79
WASIM 0.44 30.42
SWAT 0.40 18.31
PRMS 0.26 25.41
SLURP 0.76 34.81
HBV 0.36 14.48
LASCAM 0.37 16.39
IHACRES 0.66 25.49
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Fig. 11. Observed and predicted flow duration curves for the Dill catchment, overall
model period 1983–1989, homogenized input data.
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model philosophy and hence, is inevitably part of the overall model
structure. In addition, computation time still prohibits automatic

calibration with global optimization methods for many fully dis-
tributed models, such as DHSVM or WASIM.

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

0 10 20 30
0

10

20

30

SWAT HBV

DHSVM SLURP

PRMS

M
od

el
ed

 d
is

ch
ar

ge
 m

ax
im

a 
[m

3  s
-1
]

TOPLATS

LASCAM WASIM

IHACRES

Observed discharge maxima [m3 s-1]

MIKE-SHE

Fig. 12. Scatterplot of modeled vs. observed discharge maxima (nearly independent peak flows) for the Dill river using the homogenized data approach, overall model period
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Fig. 13. Modeled vs. observed slow flow minima (nearly independent low flows), for the Dill catchment using the homogenized data approach, overall model period 1983–
1998.
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5.3. Physical basis of LUCHEM models

Land use and land cover impact on several components of the
water balance. For example, plant physiology regulates transpira-
tion; canopy structure determines interception storage and
throughfall; rooting depth, density and structure affect plant water
uptake and infiltration capacity. All these processes feed back to
surface runoff and leaching, and can, therefore, potentially influ-
ence interflow and groundwater recharge. As summarized in Ta-
bles 5 and 6, the models in the LUCHEM project include a broad
range of concepts to predict these processes.

For the Dill catchment, several publications indicate that the
sensitivity of the long-term water balance components to below-
ground drivers are of secondary importance [17,44] (i.e. an in-
crease in surface runoff at the cost of interflow will not strongly
affect actual ET, which results in a low sensitivity of the long-term
water balance). Therefore, we first analyze the differences in ET be-
tween the models. The simulated multi-model average was
490 mm for actual ET as compared to an average discharge of
430 mm. No field measurements were available for the evaluation
of predicted actual ET rates. Therefore, model performance was as-
sessed qualitatively. Predicted ET rates differed substantially for
the 10 models, which might be attributed to the varying spatial
resolution of the models as well as the different concepts of mod-
eling potential and actual ET.

The spatial resolution of the models varied from 1 ha to several
km2 (Table 4). As is shown in a companion paper by Bormann et al.
[13], the impact of different spatial resolution of model input data
on simulated actual ET rates for the SWAT, TOPLATS and WASIM
models is rather small, except when the aggregation level is in-
creased beyond 1 km2. Hence, we conclude that differences in ET
cannot be explained by differences in the spatial resolution of
the models. Besides the spatial resolution, the aggregation of dif-
ferent land use classes to more general land use classes might have
also impacted simulated ET rates. For example, HBV aggregates
cropland and pasture to an ‘open vegetation’ land use class. How-
ever, we feel that potential differences in actual ET are removed
rather than enhanced by such an aggregation.

Since spatial resolution and aggregation were found to be of
secondary importance, we argue that the variation in simulated ac-
tual ET is mainly introduced by the use of different methods to cal-
culate potential and actual ET (Table 4). For example, IHACRES
estimates actual ET rates based on calibrated parameters [26],
catchment moisture and temperature or potential evaporation
data. In contrast, detailed meteorological data and plant specific
parameters are needed to calculate ET according to Penman–Mon-
teith, an approach that is implemented in several LUCHEM model
members. Even though we homogenized LAI input for the different
land use classes as described above, differences in the Penman–
Monteith methods still remained, as there is no official agreement
on how to implement it.

At this point, it is justified to ask which models provide the
most plausible simulations of ET. Unfortunately, it is not possible
to answer this directly from the model intercomparison presented
here. This would require a detailed comparison of measured and
simulated ET for individual land covers. This analysis is hampered
by the lack of measured ET data and the inability of some models to
provide simulated ET for individual land covers without substan-
tial recoding. However, the analysis of the land use change scenar-
ios by Huisman et al. [43] provided additional insights. They argue
that the possibility to compare various scenario predictions in
addition to the current land use helped to explain the diversity
in model performance. For example, the scenario analysis showed
that the actual ET simulations for pasture were high for TOPLATS
compared to the other models and land covers. Since simulated
discharge was not obviously different for TOPLATS, this indicates

that different mean actual ET rates for different land covers can
compensate each other and lead to similar discharge predictions.
Only in the case of the varying land cover proportions in the sce-
nario analysis, the high ET simulations for pasture became appar-
ent. For the actual land use distribution, it would have been
advantageous if the subcatchments had varied more in terms of
land cover, because this would also have allowed a better plausibil-
ity check on the simulated ET rates for each land use. This is a point
of attention for future model intercomparison studies.

As argued above, runoff generation does not strongly affect the
long-term water balance. However, the timing and magnitude of
particular runoff events obviously does depend on the runoff gen-
eration mechanism. The range of concepts to simulate runoff gen-
eration is large. For example, MIKE-SHE, WASIM and TOPLATS use
process-based descriptions of water infiltration into the soil,
whereas other models rely on more conceptual representations
based on storage capacity or soil wetness. In addition, some models
such as LASCAM separate between infiltration excess and satura-
tion excess runoff, whereas other models only consider saturation
excess runoff (e.g. HBV). During the workshop, we collected infor-
mation on the flow components simulated by each model (i.e. sur-
face runoff, interflow, baseflow). However, this information was
not useful because of the varying time-scales associated with the
reported flow components (i.e. interflow in SWAT might be base-
flow in another model). In addition, some of the models did not
explicitly consider interflow processes. To overcome this, we ap-
plied the WETSPRO filter [89] to all simulated discharge time ser-
ies. Using this filter, three different flow components were
distinguished (slow, intermediate and quick flow). Fig. 14 shows
that variation in flow components is only moderate, which seems
reasonable in the light of the good performance of most models.
The simulated slow flow component ranges from 30% to 50%,
whereas the slow flow fraction of the measured time series was
�35%. The two models with highest slow flow component and
the lowest intermediate flow component (DHSVM and TOPLATS)
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only consider two possible pathways of water (i.e. surface runoff
and ‘ground water’ flow).

The variation in the amount of quick flow is low. As argued be-
fore, this partly reflects the emphasis on high flows during both
manual and automatic model calibration. The results for discharge
maxima presented in Fig. 12 should also be viewed in the light of
physical differences between the models. The underestimation of
discharge maxima is reflected in the lowest fast flow contribution
for SLURP (Fig. 14), perhaps indicating an inadequate parameteri-
zation of the non-linear storage module for the top soil. Further-
more, it seems no coincidence that the models with the most
physically based description of infiltration (TOPLATS, WASIM and
MIKE-SHE) perform less well for discharge maxima. The use of
physically based concepts using soil properties estimated from
pedotransfer functions or laboratory measurements remains noto-
riously problematic at the scale of a landscape.

6. Conclusions

A detailed model intercomparison is a prerequisite for the set-
up of a multi-model ensemble. In this paper, we paved the ground
for such a multi-model ensemble to investigate the effects of land
use change on hydrology in the frame of the LUCHEM project.
Overall, the more conceptual models, especially HBV, LASCAM
and PRMS, outperformed the physically based, fully distributed
models such as DHSVM, TOPLATS, WASIM and MIKE-SHE. How-
ever, we conclude that the presented model intercomparison gave
no reason to exclude any model, and that the entire set of models is
valuable to build further multi-model ensembles and to analyze
land use scenarios, topics that are presented in subsequent papers
of this special section.

It is possible that some of the simulated differences between
the models are insignificant given the typical uncertainty in model
parameterization. However, a further quantification of stochastic
uncertainty of individual models and a comparison of the differ-
ences that evolve from structural uncertainty was beyond the
scope of this study, but a very interesting topic for future
investigations.

We conclude that differences in model performance in this
model intercomparison were attributable to the effects of model
input data, the effect of model calibration, and the physical basis
of the models:

– Depending on the spatial support and the associated data aggre-
gation and interpolation, models deal differently with model
input data, which leads to differences in model output. We
achieved a better comparison of model results by homogenizing
important model input data such as precipitation, climatic data
and LAI. Nevertheless, homogenization is limited in its effects as
the various models inherently treat spatial data differently.
However, forcing models to use comparable model inputs can
help avoid the drawing of wrong conclusions with respect to
model structural effects.

– We argue that model calibration is an inevitable component of
the model structure and its underlying philosophy. We therefore
neither considered prescribing calibration routines nor objective
functions for the different models. Following this, the fully dis-
tributed models utilized manual calibration schemes, whereas
the more conceptual models were calibrated automatically,
some of them with various objective functions (HBV), or by
the use of multi-criteria calibration (LASCAM, IHACRES). We rec-
ognize that this view is debatable. Future model intercompari-
son projects should try to quantify this effect by prescribing
fixed calibration routines. However, this would force some of
the distributed models to be applied in a frame that they were

not intended for, and which takes their basic philosophy of a pri-
ori parameterization ad absurdum.

– Structural differences that were responsible for differences in
the long-term water balance were attributed to differences in
ET for the various land use types. However, the identification
of single cause–effect relationships between soil and vegetation
for each land use type was not possible in this experimental set-
up. To resolve the intrinsic interaction between soil water status
and actual ET for single land use types would require an alterna-
tive modeling approach. We could think of applying the models
in a type of ‘lysimeter experiment’, where lateral flow is
excluded, so only vertical flux components of the participating
models could be compared. Structural differences in runoff gen-
eration mechanism also affected the timing and magnitude of
events. Despite an intertwining with the calibration intensity,
it seemed that the models using a physically based representa-
tion of infiltration performed less well for the discharge maxima.

One should bear in mind that the quality of model predictions
presented in the LUCHEM project reflect not only the appropriate-
ness of the model structure and parameter estimation schemes,
but also the skill, experience, and the time the individual modelers
were able to devote to this project. A crucial next step in land use
change studies is to investigate catchments where real land use
changes have been documented and monitored during the change.
Catchments with different causes of land use change such as storm
damages, forest fires, land abandonment or large scale reforesta-
tion or clearing are considered to provide valuable case studies.
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