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a b s t r a c t

This paper reports on a project to compare predictions from a range of catchment models applied to a
mesoscale river basin in central Germany and to assess various ensemble predictions of catchment
streamflow. The models encompass a large range in inherent complexity and input requirements. In
approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT,
PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input
data. The two predictions from each model are then combined by simple averaging to produce a single-
model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce
multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles
are shown to give predictions that are generally superior to those of their respective constituent models,
both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable
disparity in performance of the individual models. Even the weakest of models is shown to contribute
useful information to the ensembles they are part of. The best model combination methods are a trimmed
mean (constructed using the central four or six predictions each day) and a weighted mean ensemble
(with weights calculated from calibration performance) that places relatively large weights on the better
performing models. Conditional ensembles, in which separate model weights are used in different system
states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted
mean ensemble. However a conditional ensemble that discriminates between rising and receding flows
shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are
not necessarily those containing the best individual models. Conversely, it appears that some models that
predict well individually do not necessarily combine well with other models in multi-model ensembles.
The reasons behind these observations may relate to the effects of the weighting schemes, non-stationa-
rity of the climate series and possible cross-correlations between models.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

A model is a simplified conceptualization of a complex, possibly
chaotic system, which is often characterized by highly variable
behaviour in space and time. As such, no model, particularly those
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associated with natural systems, can ever provide a perfect realiza-
tion. Indeed, it can even sometimes be difficult to quantify the de-
gree of uncertainty in input data, model structure and model
parameterization. Taken together, these uncertainties inevitably
lead to considerable uncertainty in model predictions. One of the
ways of addressing some of these uncertainty issues is through
ensemble modelling. The term ‘ensemble modelling’ encompasses
a large range of approaches to producing predictions of fluxes and
properties. A single-model ensemble involves the use of a number
of realizations of a single deterministic model. Distinct predictions
are obtained for each realization by either perturbing the input
data or initial conditions, or by selecting different sets of model
parameters. These perturbations may be stochastic or determinis-
tic (e.g. derived from alternative sources). In a multi-model ensem-
ble, several different deterministic models are used. These
realizations may or may not use a common input data set.

Ensemble modelling has often been used in the climate and
atmospheric sciences, where operational ensembles have been in
use for well over a decade. Most studies of the accuracy of multi-
model ensemble forecasts in weather prediction report that they
tend to outperform individual models [9] and that multi-model
ensembles tend to perform better than single-model ensembles
[28]. Ensemble modelling has the potential to assist in providing
better understanding of the physical processes and in informing
the development of better models [7,23].

Until relatively recently, however, ensemble modelling has re-
ceived little attention in hydrology, where most modelling studies
use only one model. There have been several studies comparing
predictions from various hydrological models (e.g., [27,19]). In gen-
eral, these studies have been limited to describing how different
models and different modelling approaches can affect prediction
accuracy, but usually have not considered the issue of pooling
model predictions to arrive at some consensus prediction.

Recently, some new cooperative initiatives such as the Distrib-
uted Model Intercomparison Project (DMIP) and the Ensemble
Streamflow Prediction (ESP) project in the United States and the
international Hydrological Ensemble Prediction Experiment (HEP-
EX) have begun to explore ensemble modelling in a hydrological
setting. These projects are aimed primarily at using single-model
ensembles to produce short term streamflow forecasts conditioned
on climate forecasts (e.g., [6,11,13]). Other ensemble research has
focussed on combining predictions using different parameter sets
from a single model structure (e.g., [16]).

The first published study on multi-member hydrologic ensem-
bles appears to be that of Shamseldin et al. [23], in which ensemble
predictions are constructed using five rainfall-runoff models ap-
plied to 11 catchments. They assessed combinations involving sim-
ple averaging, a regression-based scheme and a neural network
scheme. While the results are inconsistent from one catchment
to another, Shamseldin et al. conclude that the combined models
generally produce better predictions than the single models.
Georgakakos et al. [10], as part of DMIP, assessed predictions from
seven distributed models applied to six catchments in the United
States. They found that a simple mean of the five best models in
each catchment consistently outperforms the best individual mod-
el, but that a weighted mean ensemble, while usually better than
the best model, is inferior to the simple mean ensemble. In a fur-
ther analysis of the DMIP dataset, Ajami et al. [1] assessed the pre-
dictions of several types of regression-based ensemble and
concluded that they are superior to predictions from an unbiased
average ensemble and from individual models. They also found
that combination methods involving bias removal are desirable,
but only in catchments with stationary flow conditions between
the calibration and validation periods.

To date, none of these projects have considered ensemble mod-
elling of the hydrological impacts of land use change. This paper is

the second in a series of four describing the Land Use Change on
Hydrology by Ensemble Modelling (LUCHEM) project, which in-
volves the application of 10 catchment models to a basin with
nested gauges. The first paper [5] describes the background to
the project and analyses the individual performances of the 10
models in predicting streamflows for current land use conditions.
The third paper [12] describes the results of an application of these
10 models to the prediction of the impacts of land use change and
assesses the uncertainty in the land use change predictions. The
fourth paper [4] assesses the impact of changes in the resolution
of spatial input data on the streamflow predictions of three of
the LUCHEM models.

In this paper, we assess the use and effectiveness of a number of
model ensembles made up of some or all of the individual models.
In comparison with previous studies, this paper includes a larger
number of models with a large range of inherent model complexity
and assesses a larger range of ensemble combination techniques.
The following sections describe the modelling procedure and ana-
lyse prediction accuracy both for the individual models and for
several types of ensembles including all models.

2. The Dill River catchment

The Dill River in Hesse, Germany, is a tributary of the Lahn Riv-
er, which ultimately flows westward into the Rhine River. The Dill
River at Asslar has a catchment area of 693 km2. The topography of
the catchment is characterized by low mountains and has an alti-
tude range of 155–674 m. The mean annual precipitation of the Dill
catchment varies from 700 mm in the south to more than
1100 mm in the higher elevation areas in the north and also exhib-
its a general west-east gradient. Areas with lower annual precipi-
tation tend to have summer-dominated rainfall patterns, while
the wetter parts of the catchment are dominated by winter precip-
itation patterns. A small proportion (less than 5%) of winter precip-
itation falls as snow, particularly at higher elevations. Refer to
Breuer et al. [5] for further details on the catchment’s climate,
topography, soil and land cover.

Streamflow in the Dill catchment is generated primarily from
interflow processes with relatively little baseflow and surface run-
off. Mean annual streamflow for the period 1983–1998 is 438 mm
(about 48% of catchment-averaged precipitation). There is a dis-
tinct winter peak, with 77% of streamflow occurring in the six
months from November to April. There are, however, some signif-
icant temporal trends in streamflow patterns during the 19-year
period used in this study. The mean annual streamflow recorded
in the 1990s is about 20% less than that for the 1980s and this
has been accompanied by a significant reduction in runoff coeffi-
cient. Most of the reduction in streamflow has occurred during
the winter months. There is also some evidence that the winter
peak and the period of summer low flows are arriving about one
month later during the 1990s than during the 1980s.

3. The models

Ten models with the capability of predicting the impacts of land
use change are applied to the Dill catchment. In approximately
decreasing order of complexity, they are: DHSVM [26], MIKE-SHE
[22], TOPLATS [20], WASIM-ETH [18], SWAT [2], PRMS [15], SLURP
[14], HBV [3], LASCAM [24] and IHACRES [8]. In terms of their spa-
tial resolution and the overall number of model parameters, the
models represent a broad cross-section of complexity ranging from
fully distributed, physically based models with explicit groundwa-
ter schemes (DHSVM, MIKE-SHE) to fully lumped, conceptual mod-
els (e.g. IHACRES). There are also other more subtle differences
among the models, including differences in rainfall interpolation,
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channel routing and estimation of potential evaporation. Some
models use explicit snow accumulation routines, while others treat
all precipitation as rainfall.

Each model was prepared, calibrated and operated either by its
creator or by a modeller with considerable familiarity in its use.
Each modeller was provided with common digital maps of eleva-
tion, soil type (discriminated into 149 soil classes and including
soil physical characteristics) and land cover. Daily precipitation
(16 sites) and weather (2 sites) data were provided, but modellers
were free to interpolate and re-process this data by any suitable
method. Similarly, the calibration methods and objective functions
were different from model to model. All models were calibrated
using observed streamflow data for the period 1983–1989 and
model predictions were developed for the validation period
1990–1998. A maximum of 3 years of additional weather data
(1980–1982) was available for model spin-up. All the models were
set up to provide spatially explicit predictions of streamflow at a
variety of spatial scales across the catchment. Observed stream-
flows from three gauged subcatchments were available to assess
spatial predictions, but this paper is limited to the analysis of mod-
el performance against the observed streamflows at Asslar. A more
detailed description of model characteristics, set-up procedures
and calibration procedures appears in Ref. [5].

The use of different data interpolation schemes by different
models resulted in a considerable range of predictions of basic
catchment water balance components like mean annual rainfall,
actual evaporation and storage [5]. In an effort to minimise these
differences, a second calibration was performed for each model.
In the second calibration procedure, modellers were restricted to
using common, pre-processed, high-resolution (25 m) fields of veg-
etation density and daily precipitation (interpolated from the 16
observation sites) and to using other climate data from a single,
central observation station. They were invited to recalibrate their
models to a similar level of rigour as before and submit a second
set of model predictions for both the calibration and validation
periods. We refer to this as the homogeneous dataset, while the
predictions from the first calibration process are referred to as
the original dataset. For the MIKE-SHE model, predictions are avail-
able only for the homogeneous dataset. More details on the cali-
bration procedures and an analysis of prediction differences
between the two calibration processes are available in Ref. [5].

4. Ensemble construction

Although the second calibration was performed primarily to
facilitate better comparison of individual model performances, it
also provides an opportunity for ensemble analysis. For each model
(except MIKE-SHE), we have two semi-independent realizations of
flow predictions, one for the original calibration and one for the cal-
ibration using the homogeneous dataset. We may combine these
into a single time series of flow predictions for each model by taking
the mean of the two predictions. This resulting time series will be re-
ferred to as a single-model ensemble (SME). We now use these SMEs
(along with the homogeneous predictions of MIKE-SHE) as members
of several different types of multi-model ensemble (MME).

Ensemble predictions may be constructed in a number of ways.
Perhaps the simplest is the approach we used to construct the
SMEs, which is to take the raw mean of the model predictions
for each day. Another simple ensemble prediction is to adopt the
daily median of all ensemble members. In this study, where 10
models are available, the median is given by the mean of the fifth
and sixth highest predictions. Ensembles may also be constructed
by including a subset of the 10 models (e.g. the mean of the best
three models in calibration). A further elaboration might be to in-
clude a mixture of two or more subset ensembles, with the switch-

ing between ensembles conditioned upon some attribute of the
flow regime or climate. In this paper, we assess the performances
of the following ensembles:

� mean of all models,
� median of all models,
� trimmed mean (excluding extreme predictions),
� multiple linear regression of all models,
� principal components regression,
� Bayesian model averaging,
� means of all permutations of models ranging from 1 to 10

members,
� weighted mean of all models (weighted by calibration

performance),
� weighted means of all permutations of models,
� conditional ensembles based on season,
� conditional ensembles based on flow stage (i.e. rising or falling),
� conditional ensembles based on flow level (i.e. high and low

flows).

In the cases of the regression ensembles, the weighted ensem-
bles and the conditional ensembles, the ensemble members and
their relative weightings are determined using predictions from
the calibration period only. These weighting are then applied with-
out adjustment during the validation period. For example, for the
multi-variable linear regression ensemble, regression coefficients
are established during the calibration period and applied un-
changed during the validation period.

The multiple linear regression ensemble is constructed by using
the 10 SMEs as the independent variables and the observed flow in
the calibration period as the dependent variable. Given the high
correlation between efficiency and the square of the correlation
coefficient for values of both approaching one, it is reasonable to
expect that the unconstrained multiple linear regression ensemble
represents the optimal linear combination of model predictions
during the calibration phase and it should therefore give better
efficiencies than the raw mean, the trimmed means and the
weighted means – all of which are inferior linear combinations –
and any individual model. The regression ensemble must also have
zero bias during the calibration period. However, none of these
properties will necessarily hold for the validation period. One dis-
advantage of the regression approaches is that they might include
a non-zero intercept. This could result in a nonzero ensemble flow
prediction even when all models are predicting zero flow. Regres-
sion ensembles might also involve negative coefficients for some
models and this too can potentially result in negative flow predic-
tions. To partially overcome these issues we also assess two con-
strained (zero-intercept) multiple regressions: one involving all
10 models and one including only those models with positive
and significantly non-zero coefficients.

Where there is multicollinearity between the independent vari-
ables (the individual SMEs) the predictions of a multiple linear
regression model may have reduced reliability. Principal compo-
nents regression (PCR) has been proposed as a method for coping
with this collinearity by transforming the predictor variables into
a set of orthogonal variables called principal components. These
orthogonal variables (or a subset of them) are then suitable for
use in ordinary least squares regression. In this study we assess
the predictions of PCR ensembles constructed from 1, 2, 3 and 4
principal components.

Recently, a Bayesian model averaging (BMA) method was pro-
posed to optimally combine the predictions of a multi-model
ensemble [21,25]. The BMA predictive model can be expressed as

pðDkf1; . . . ; fnÞ ¼
Xn

i¼1

wigiðDkfiÞ;
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where f is the predictions for each ensemble member, wi is the
weight of the ith model and gi(Dkfi) can be interpreted as the
probability density function (PDF) of the measurement given
the forecast, conditional on the prediction being the best prediction
in the ensemble. The weights can be interpreted as the individual
model’s relative contribution to predictive skill of the ensemble.
They are positive and add up to one. In the original approach of Raf-
tery et al. [21], the conditional PDF gi(Dkfi) can be approximated
with a normal distribution centred on a bias-corrected forecast
and having a variance r2 as

Dkfi � Nðai þ bifi;r2Þ;

where ai and bi are bias correction terms that are derived from linear
regression between measurement and prediction for the training
(calibration) period. Vrugt et al. [25] showed that the use of the intu-
itively more appropriate gamma distribution did not improve the
performance of the BMA method. They did, however, argue that
the linear bias correction is too simplistic for streamflow data, and
suggested instead to consider a heteroscedastic error with r2 = b � fi,
where b is a slope parameter that relates the forecast to the variance.

The BMA approach requires the specification of the model
weights, the variance and the slope parameter when a heterosced-
astic error is assumed. Following Vrugt et al. [25], we estimate
these parameters by posing an optimization problem in a maxi-
mum likelihood context. A global optimization algorithm is used
to maximize the log-likelihood function

lðhÞ ¼
X

t

log
Xn

i¼1

wigiðDtkfitÞ;

where h denotes the parameters to be estimated and the summing
is over all observation times t in the training period. After optimiza-
tion, the deterministic BMA ensemble prediction is simply given by

EðDkf1; . . . fnÞ ¼
Xn

i¼1

wifi:

In this study, we consider four BMA analyses. The first two consist
of the original approach of Raftery et al. [21] with and without bias
correction and the other two consider a heteroscedastic error with
and without bias correction.

Other ensembles may be constructed by weighting the relative
contributions of the models or by using subsets of the 10 models.
For example, one of the trimmed mean ensembles is calculated
by eliminating the highest and lowest model prediction each day
and calculating a mean ensemble prediction from the predicted
flows of the remaining eight models. Similar trimmed ensembles
may be constructed from the six or four centremost predictions
each day. We would expect the predictions of the three trimmed
ensembles to lie between those of the mean and median, with
the eight-model trimmed mean being nearest to the mean
and the four-member trimmed mean being nearest to the median.
The mean and median ensembles are equivalent to a 10-model
trimmed mean and a two-model trimmed mean, respectively.

In the weighted ensembles, the weightings for each model must
be calculated from some statistical property of the model’s calibra-
tion predictions. A suitable statistic to use is the inverse of the
mean square error. This is equivalent to weighting by 1/(1 � E),
where E is the model’s calibration efficiency [17]. If we also intro-
duce an optional exponent, k, then the weighting for the ith model
is given by

Wiðn; kÞ ¼
1

ð1� EiÞk
Xn

i¼1

1

ð1� EiÞk

 !,
;

where n is the number of models in the ensemble. In this way (pro-
vided k is positive), the models with the largest calibration efficien-
cies make the largest contributions to the weighted ensemble in both

calibration and validation periods. The case where k = 1 is equivalent
to weighting by 1/(1 � E), while the case where k = 0 represents the
unweighted mean. The limit as k tends to infinity is equivalent to
using the best SME. Thus, the rationale for allowing different values
of k is that they allow us to examine ensembles with differeing de-
grees of relative dominance of the better performing models.

With each unweighted or weighted mean having up to 10 po-
tential members, there is a total of 1023 permutations of MME,
ranging from the 10 one-model MMEs (i.e. the 10 SMEs) to the sin-
gle 10-model MME. For example, there are 252 possible combina-
tions of five-member MMEs. In this paper, we assess all possible
permutations.

It is recognized that some models may perform better on some
parts of the hydrograph than on others. For example, a model may
provide better predictions of summer flows than of winter flows.
This is clearly a possibility given that some of the models include
snow accumulation and melting routines while others do not. This
raises the possibility that better overall predictions might be ob-
tained by using different combinations of models (weighted or
not) for different parts of the hydrograph. This approach we refer
to as conditional ensembling. Three conditional ensembles are as-
sessed here. As well as assessing the use of separate summer (de-
fined here as May–October) and winter (November–April) MMEs,
we also consider separate MMEs for rising and falling flows, and
for high and low flows.

For each conditional ensemble it is a requirement that the sep-
arate MMEs be constructed using data from the calibration period
only. For application to the validation period, we, therefore, need a
way of discriminating between the two cases. Furthermore, this
discrimination must be based on the SME predictions only, not
the observed hydrographs. After some preliminary analysis, it has
been found that defining days with rising flows as days on which
at least five of the SME predictions are rising is the best indicator
of rising flows in the observed record. Days with fewer than five
rising SMEs are classified as receding. This includes days with static
or zero flows. This scheme has a prediction success rate of 83% dur-
ing the calibration period. According to this classification criterion,
rising flows occur on 28% of days and carry 41% of the total flow.
The demarcation for high and low flows is taken as days with the
mean MME prediction above and below 1 mm. Mean MME predic-
tions in excess of 1 mm occur on 37% of days and account for 78%
of the total flow. Of course, given that most of the flow, and there-
fore most of the large flow events, occur in winter, it is possible
that the flow-dependent conditional ensemble will yield similar
results to the seasonal ensemble.

With the emphasis in the LUCHEM project being on predicting
the impacts of land use change, we do not consider assessing some
of the sequential data assimilation techniques (e.g. the ensemble
Kalman filter) that have recently been applied with some success
to operational or experimental forecasting ensembles (e.g., [13,25]).

There are many potential metrics of prediction quality. In this
study, we restrict ourselves to assessing model performance using
the Nash–Sutcliffe efficiency calculated on daily flows, and the to-
tal bias. The former gives a measure of how well a model repro-
duces the fine-scale aspects of the observed time series (albeit
biased towards high flows), while the latter assesses the long-term
prediction quality.

5. Model predictions

5.1. Predictions of individual models

Breuer et al. [5] report on the calibration and validation perfor-
mances of the individual models. A brief recap of their results is gi-
ven here.
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A time series of model predictions is shown in Fig. 1 for part of
the calibration period. Qualitatively, the models are shown to be
providing good predictions of the observed streamflow in terms
of timing and magnitude of events. The envelope defined by the
range of model predictions encompasses the observed streamflow
on 96% of days, with little difference between calibration and val-
idation periods. When this envelope is trimmed to eliminate the
largest and smallest prediction, it still includes the observed
streamflow on 83% of days. On average, the daily minimum predic-
tion is 52% of the observed flow and the daily maximum prediction
is 171% of the observed flow.

Scatter plots for two of the performance statistics (daily Nash–
Sutcliffe efficiency and bias) for each of the models are shown in
Fig. 2 for the original case. Statistically, the best models are those
with efficiencies approaching 1.0 and biases near 0%. For the cali-
bration period (open circles), all but two of the models have nega-
tive biases (i.e. they underpredict). However, no model has an
absolute bias as high as 10%. The calibration efficiencies range from
about 0.6 to 0.9, with the less complex models tending to have
higher values.

When the predictions in the validation period are assessed (so-
lid circles in Fig. 2), the relative positions of the models remain lar-
gely unchanged. However, nine of the 10 models have increased
(i.e. more positive) biases, to the extent that they are all now over-
predicting. All but one of the models also have increased efficien-
cies in the validation period.

For some models the differences in calibration statistics be-
tween the original and homogeneous datasets are quite small, with
the latter typically yielding slightly better efficiencies and slightly
more positive bias. However, for other models, especially DHSVM
and WASIM-ETH, efficiencies decline and bias increases substan-
tially. When the homogenized calibrations are used in the valida-
tion period (Fig. 3), once again, most models have increased
biases and, except for LASCAM and TOPLATS, also have increased
efficiencies. The trajectories of movement between calibration
and validation are similar to those in Fig. 2.

5.2. Single-model ensembles

The bias and efficiency of the SMEs are compared to those of the
individual calibrations in Fig. 4 and Table 1. By definition, the bias
of a SME constructed from the mean of its members is equal to the
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Fig. 1. Time series of observed streamflow (thick black line) in the Dill catchment,
1983, together with the various model predictions for the homogeneous dataset
(thin coloured lines). The names of the individual models are immaterial.
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Fig. 2. Bias and efficiency of model predictions for the original dataset for the
calibration (open circles) and validation (solid circles) periods. There are no
predictions of the MIKE-SHE model available for the original dataset.
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Fig. 3. As for Fig. 2, but for the homogeneous dataset.
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mean of the biases of the two model realizations. However, in both
calibration and validation periods, the efficiency of the SME is al-
ways greater than the mean efficiency of the two ensemble mem-
bers. In fact, in three of the nine calibration cases and four of the
nine validation cases, the ensemble efficiency exceeds those of
both ensemble members. These include both time periods for
TOPLATS and WASIM-ETH.

5.3. Multi-model ensembles using simple averaging

In this section, we use the predictions of the SMEs calculated
above (along with the homogeneous predictions of MIKE-SHE) as
members of several different types of simple multi-model ensem-
bles that are based on raw averages.

The prediction capabilities of selected simple MMEs (labelled
with the letter B) are shown in Fig. 5 and Table 2. The mean ensem-
ble has the best efficiency in the calibration period and the median
has the worst. However, in the validation periods, the median has
the largest increase in efficiency of the simple ensembles and the
smallest increase in bias. All five ensembles improve in efficiency
in the validation period. The mean always has a larger (i.e. more
positive) bias than the median for both calibration and validation
periods.

Interestingly, although the raw mean is a simple ensemble and
includes contributions from some models that have quite modest
performance statistics, its validation efficiency is still superior to

that of the best SME. Similarly, the trimmed mean and median
ensembles, despite having poorer calibration statistics than the
best SME are all clearly better than the best SME in the validation
period.

5.4. Regression-based ensembles

The multiple linear regression ensemble (C1 in Fig. 5 and Table
2) has the best calibration efficiency of any model tested in this
study, but unlike the simple averaging ensembles, its performance
degrades significantly between the calibration and validation peri-
ods (in both bias and efficiency). Its validation efficiency is inferior
to those of the median and trimmed mean ensembles, and its val-
idation bias is larger than any other ensemble in Fig. 5 and Table 2.

In the multiple linear regression ensemble, there is considerable
multicollinearity between the independent variables. Cross-corre-
lation coefficients of up to 0.96 are observed between some pairs
of SMEs. Furthermore, three of the SMEs have negative coefficients
in the linear regression ensemble, while two others have negative
coefficients that are not significantly different to zero. When the
intercept is constrained to zero (C2 in Fig. 5 and Table 2) efficien-
cies are identical to the unconstrained case, but biases are more
negative, for both calibration and validation. When we further lim-
it the regression by eliminating SMEs with negative or non-signif-
icant coefficients (C3 in Fig. 5 and Table 2) the efficiency in
validation is depressed slightly, but in validation it is unchanged.
However, biases are significantly more positive than any other
ensemble in Fig. 5 and Table 2.

Principal components regression can be used to overcome some
of the problems with linear regression methods. PCR ensembles are
constructed for p = 1, . . . ,4, where p is the number of principal
components used. The resulting ensemble statistics are presented
in Fig. 5 and Table 2 (ensembles D1–D4). There is an increase in
calibration efficiency as more components are added, but little

Table 1
Calibration and validation efficiencies for the original and homogeneous data sets and
the SMEs

Model Calibration Validation

Orig. Homog. SME Orig. Homog. SME

DHSVM 0.803 0.760 0.803 0.873 0.849 0.878
MIKE-SHE – 0.647 0.647 – 0.732 0.732
TOPLATS 0.593 0.656 0.670 0.551 0.611 0.648
WASIM 0.740 0.703 0.742 0.750 0.743 0.768
SWAT 0.721 0.730 0.726 0.729 0.738 0.733
PRMS 0.845 0.845 0.845 0.880 0.880 0.880
SLURP 0.625 0.655 0.644 0.715 0.708 0.715
HBV 0.907 0.918 0.913 0.914 0.925 0.921
LASCAM 0.895 0.897 0.897 0.898 0.890 0.895
IHACRES 0.818 0.817 0.818 0.867 0.865 0.866
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Fig. 5. Bias and efficiency of selected multi-model ensembles for the calibration
(open circles) and validation (closed circles) periods, compared with the corre-
sponding statistics for the best single-model ensemble. Labels for each ensemble
are defined in Table 2.

Table 2
Bias and efficiency of selected MMEs for the calibration and validation periods

MME Calibration Validation

Bias (%) Efficiency Bias (%) Efficiency

A1. Best SME �0.6 0.913 4.9 0.921
B1. Mean 0.2 0.910 5.5 0.930
B2. Trimmed Mean (8 models) �1.8 0.905 3.8 0.936
B3. Trimmed Mean (6 models) �2.4 0.903 3.2 0.937
B4. Trimmed Mean (4 models) �2.7 0.897 2.7 0.938
B5. Median �2.8 0.893 2.4 0.936
C1. Linear regression (unconstrained) 0.0 0.948 5.6 0.932
C2. Linear regression (constrained) �1.5 0.948 3.5 0.932
C3. Linear reg. (constrained, coeff>0) 1.7 0.944 7.2 0.932
D1. PCR (1 component) 0.0 0.923 3.4 0.921
D2. PCR (2 components) 0.0 0.929 4.0 0.923
D3. PCR (3 components) 0.0 0.934 4.9 0.924
D4. PCR (4 components) 0.0 0.938 4.6 0.923
E1. BMA (homoscedastic) 0.1 0.922 5.0 0.928
E2. BMA (homoscedastic, unbiased) �1.8 0.923 4.2 0.934
E3. BMA (heteroscedastic) 0.2 0.921 5.1 0.931
E4. BMA (heteroscedastic, unbiased) �1.6 0.927 4.0 0.933
F2. Weighted 10-model (k = 0.5) �0.2 0.918 5.2 0.935
F3. Weighted 10-model (k = 1.0) �0.5 0.925 4.9 0.937
F4. Weighted 10-model (k = 1.5) �0.8 0.930 4.7 0.938
G1. Seasonal 10-model (k = 1.5) �1.1 0.930 4.2 0.938
G2. Rising/falling 10-model (k = 1.5) �1.3 0.934 4.0 0.941
G3. High/low 10-model (k = 1.5) �0.4 0.930 4.2 0.939
H1. Best unweighted calibration 0.5 0.936 5.6 0.928
H2. Best weighted calib. (k = 0.5) 0.1 0.940 5.5 0.934
H3. Best weighted calib. (k = 1.0) �0.4 0.942 5.4 0.936
H4. Best weighted calib. (k = 1.5) �0.8 0.942 5.2 0.935
I1. Best seasonal (k = 1.5) �1.3 0.943 3.8 0.936
I2. Best rising/falling (k = 1.5) 0.1 0.946 5.5 0.933
I3. Best high/low flow (k = 1.5) 0.1 0.942 4.8 0.936
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improvement in validation efficiencies. As was the case for the lin-
ear regression MME, the PCR ensembles all have efficiencies that
decline in the validation period. In both calibration and validation,
the PCR efficiencies are less than those of the linear regression
MME.

5.5. Bayesian model averaging ensembles

Results of the BMA analyses are presented in Fig. 5 and Table 2
(ensembles E1–E4). There is little difference between the perfor-
mances of the two error models. However, the use of the linear bias
correction slightly improves efficiency in both error models and
also leads to lower (more negative) prediction biases. Unlike the
linear regression and PCR methods, the BMA ensembles yield effi-
ciencies that are greater in the validation period than in the cali-
bration period.

5.6. Unweighted and weighted selective ensembles

Fig. 6 shows the ranges of calibration and validation efficiencies
for the various permutations of unweighted mean MMEs and pro-
vides further demonstration of the effectiveness of ensembling. For
both calibration and validation, there is a clear trend towards in-
creased median efficiencies and decreased ranges of efficiency as
the number of models in a MME increases. In both cases, the max-
imum efficiency occurs for n = 5, but this occurs for different com-
binations of models. All MMEs with three or more members
(n P 3) have efficiencies greater than the median of the respective
SMEs (n = 1). In calibration, 49% of ensembles with n > 1 have effi-
ciencies that exceed the highest efficiency of their constituent
SMEs, while in validation, this number increases to 75%. For all val-
ues of n, the validation efficiencies exceed those of calibration.

Next, we investigate which combinations of models are likely to
produce the greatest increases in prediction efficiency. For each of
the permutations with n > 1, we can calculate the variance of effi-
ciencies of the constituent SMEs. We then divide the population of
MMEs into three groups: those with the lowest third of variances
(i.e. those MMEs whose members have the most similar efficien-
cies), those with the highest third of variances (i.e. those whose
members have widely differing efficiencies) and those with the
middle third. In the calibration period, 85% of the ensembles with
the lowest variances have ensemble efficiencies that exceed the

maximum efficiency of the constituent SMEs (not shown). In con-
trast, only 21% of ensembles with the highest variances improve on
the best SME.

Weighted ensembles (k > 0) generally provide better prediction
efficiencies in calibration and validation than the unweighted
ensembles (k = 0). Analysis using a number of values of k indicates
that a value of 1.5 provides the largest prediction efficiencies. As k
increases beyond 1.5 efficiencies begin to decline. Fig. 7 compares
validation efficiencies for three values of k. Within each ensemble
class (i.e. each value of n) there is a general trend of increasing effi-
ciencies and decreasing ranges as k increases from 0 to 1.5.

Adopting k = 1.5 as the optimal weighting parameter, we com-
pare calibration and validation efficiencies for the 1023 individual
MMEs in Fig. 8a. All but one of the MMEs with n P 2 have calibra-
tion and validation efficiencies that exceed the five worst SMEs. In-
deed, there are relatively few MMEs with validation efficiencies
poorer than the worst nine SMEs. There also appears to be a clear
correlation (r2 = 0.75) between calibration and validation efficien-
cies in Fig. 8a, with the models with large calibration efficiencies
also tending to have large validation efficiencies. However, closer
inspection of the upper right corner of Fig. 8a suggests that this
observation does not hold throughout the range of efficiencies. In
Fig. 8b, it emerges that none of the ensembles with the 78 best cal-
ibration efficiencies is among those with the best 78 validation
efficiencies.

The 10-model MME is only just in the upper quartile of calibra-
tion efficiencies (252nd of 1023), but is 80th best in validation.
However, only 26 MMEs are better than the 10-model MME in both
calibration and validation. In contrast, the best of the SMEs (HBV)
ranks only 586th in calibration and 780th in validation. In other
words, more than three-quarters of the MMEs have better valida-
tion efficiencies than the best individual model. These include all
175 models with seven or more members. The effectiveness of
combining predictions from several models is also highlighted by
the observation that only seven of 1013 ensembles with n P 2
have validation efficiencies that are less than any of their constitu-
ent SMEs.

There appear to be subtle synergies between various models in
the MMEs. The best calibrated model (HBV) appears in all of the
top 423 calibration MMEs; no other model appears in more than
256 of these, although all are in at least 196. However, the repre-
sentation of SMEs in the best validation models is more revealing.
DHSVM, which has only the fourth best validation efficiency of the
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10 SMEs (Table 1) and one of the largest biases, is a member of all
of the best 134 validation MMEs. This is more than HBV, the best
validation SME, a constituent of 133 of the best 134. On the other
hand, LASCAM, which has the second best SME in the validation
period and is close to the median in bias, is unrepresented in any
of the best 49 MMEs. All other SMEs are represented at least 20
times. The addition of LASCAM to the top 96 validation models that
do not already include it, universally results in a decrease in valida-
tion efficiency. Of the 10 nine-member ensembles, the one that
doesn’t include LASCAM has the highest validation efficiency. In
contrast, the addition of either DHSVM or HBV to an ensemble that
doesn’t already include them always results in an increase in vali-
dation efficiency. In the case of WASIM-ETH, this is true for all but
one ensemble.

Of course, the reality is that for any given value of k, there are
really only two of the 1023 possible permutations that could justi-
fiably be chosen for blind prediction on the basis of their calibra-
tion performance alone. These are the 10-member MME, which
incorporates all available SMEs, and the permutation with the best
calibration performance. As is evident in Fig. 8b, there are many
candidate permutations with better validation efficiencies than
these, but we have no way of objectively choosing them based
on their calibration performance.

The calibration and validation measures for some of the choosa-
ble unweighted and weighted MMEs appear in Table 2 and Fig. 5,
where they are labelled with the letters F and H. The unweighted
10-model MME is the same as the mean MME. For the 10-model
MMEs, the sequence of model weightings from B1 through F2 and
F3 to F4 clearly shows a trend of increasing efficiencies in both peri-

ods as the weighting factor, k increases. There is also a decrease in
validation bias. For all values of k, the permutation with the best cal-
ibration efficiency is always a five-member ensemble comprising
SWAT, DHSVM, HBV, TOPLATS and LASCAM. Whilst these MMEs
have some of the highest calibration efficiencies in Fig. 5, their per-
formance degrades in the validation period. In validation, these five-
member ensembles always have slightly lower efficiencies and
slightly larger biases than the corresponding 10-member MMEs.

5.7. Conditional ensembles

5.7.1. Ensembles for different seasons
HBV has the best calibration efficiencies in winter; LASCAM in

summer. As well as LASCAM, IHACRES, DHSVM and SWAT all have
higher calibration efficiencies in summer than in winter. For SWAT,
MIKE-SHE and TOPLATS, the absolute differences between summer
and winter calibration efficiencies exceed 0.1. These seasonal dif-
ferences mean that combined seasonal MMEs made up of the best
calibration models in summer and winter are likely to contain dif-
ferent constituents. They also mean that a weighted ensemble with
the same members in summer and winter is likely to feature differ-
ent effective weightings for the various constituent SMEs for each
season.

In the calibration period, there is a general tendency towards
slight underprediction in summer and slight overprediction in win-
ter. In the validation period, streamflows in both seasons are over-
predicted, more so in summer.

Analysis of seasonal models with various values of k again
shows that k = 1.5 gives the best predictions in both periods. How-
ever, in comparison with the non-seasonal selective ensembles, the
use of seasonal switching results in only minor improvements in
efficiencies in both periods and small reductions in bias (more neg-
ative in calibration; less positive in validation). For example, com-
paring the 10-member seasonal ensemble (G1) with F4 in Fig. 5
shows little change in efficiencies. In calibration, the best combina-
tion of seasonal models is an ensemble consisting of six SMEs for
summer and five SMEs for winter. The resulting MME is denoted
as I1 in Fig. 5, but shows only modest improvement in overall effi-
ciency over the corresponding non-seasonal MME (H4).

5.7.2. Ensembles for rising and receding flows
Among the SMEs in the calibration period, LASCAM has the best

efficiency for rising flows and HBV has the best efficiency for reced-
ing flows. Only LASCAM and MIKE-SHE have better calibration effi-
ciencies for rising flows than for receding flows. There are large
differences (more than 0.1) between rising and receding efficien-
cies in the calibration period for SWAT, MIKE-SHE, PRMS and WA-
SIM-ETH.

In calibration, there is a general tendency to slightly underpre-
dict rising flows and slightly overpredict recessions. In validation,
the tendency is towards more substantial overprediction of rising
flows and a moderate overprediction of recession flows.

With a weighting exponent of k = 1.5, the 10-member MME
based on rising and falling flow levels (model G2 in Fig. 5) has sig-
nificantly better efficiencies for both calibration and validation
than the corresponding non-conditional model (F4). Of all the
ensembles tested in this study that could reasonably be chosen
for blind prediction on the basis of their calibration performances
alone, this model has the best validation efficiency. Indeed, its val-
idation efficiency would place it in the top 15 models in Fig. 8b.

The best calibration ensemble based on rising and falling flows
consists of four SMEs for the rising limb and five SMEs for the fall-
ing limb, and is denoted I2 in Table 2 and Fig. 5. Its calibration effi-
ciency is very high and it has little calibration bias, but in the
validation period its performance is poorer than the corresponding
non-conditional MME (H4).
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5.7.3. Ensembles for high and low flows
In calibration, there is a general tendency to slightly underpre-

dict high flows and moderately overpredict low flows. In valida-
tion, both are moderately overpredicted. All the SMEs have
substantially poorer calibration efficiencies for low flows than for
high flows, with four having negative low flow efficiencies. HBV
has the highest efficiencies for both high and low flows.

The 10-member ensemble (G3 in Table 2 and Fig. 5) has similar
calibration and validation efficiencies to the corresponding non-
conditional ensemble (F4), but is slightly less biased. The best
ensemble in calibration (I3) has five members for high flows and
eight for low flows. It too, shows little improvement over the per-
formance of the corresponding non-conditional model (in this case,
H4).

The results shown for the flow-dependent ensembles use a
mean MME prediction threshold of 1 mm to discriminate between
high and low flow days. Tests using a variety of thresholds between
0.5 and 7.0 mm (which are exceeded on 61% and 1.5% of days,
respectively) show that choice of threshold has a negligible impact
on prediction efficiency in the validation period.

5.7.4. Model weights
Weights for the ensembles that seek to find a time-independent

combination of SMEs are listed in Table 3. In all cases weights ar
determined solely from predictions in the calibration period. In
terms of calibration efficiency, the best ensembles are the multiple
linear regression ensembles, especially C1 and C2 (Table 2). They
are characterized by large weights for the best-performed models,
athough these are inflated slightly by the negative weights for
some models. Other well-performed calibration ensembles are
those for the best weighted calibrations (ensembles H2–H4),
where the ensembles are dominated by just two models (HBV
and LASCAM). In validation, the best ensembles with constant
weighting are F3 and F4, which contain non-negative contributions
from all 10 SMEs. However, they too are dominated by HBV and
LASCAM with only one other SME (PRMS) having weights that
are consistently greater than average.

In contrast with these, the ensembles that place least weight on
the best-performed models (e.g. B1, D1, D2 and F2) have consider-
ably poorer efficiencies in calibration or validation or both. The
most extreme weight for any model is for one of the BMAs (E4),
where HBV provides 61 % of the ensemble with no other model
contributing more than 16%. While this yields efficiencies that
are greater than A1 (for which the effective HBV weighting is

100%), its efficiencies are less than those of many of the ensembles
that weight the models slightly more equitably (e.g. F3, F4).

Finally, it is interesting to note that the five models with non-
negative linear regression coefficients (C1–C3) are the same as
the five models with the best calibration efficiencies (H1–H4).
Those five do not include some models that contribute strongly
to some of the other ensembles. In particular, PRMS has above
average weights in all ensembles except the linear regressions,
yet is not included in H1–H4.

6. Discussion

Prediction uncertainty arises from three sources: data uncer-
tainty, model structural uncertainty and parameter uncertainty.
Ensemble modelling can be used to reduce any of these uncertain-
ties. In this study we do not explore parameter uncertainty (this is
best done using a Monte Carlo approach in a single member
ensemble). A multi-model ensemble approach generally helps re-
duce prediction uncertainty by sampling models with a range of
structural uncertainties. Different models have different strengths
and weaknesses. Some models will predict better than others in
different parts of the hydrograph (e.g. baseflow or peak flows, sum-
mer or winter). In an ensemble, the deficiencies in one model may
be masked by the strengths in others or even by a compensating
weakness in another model. In the original calibrations in this
study, each model uses the input data in different ways to con-
struct precipitation, potential evaporation and vegetation density
fields. In this way, the ensembles based on the original calibration
encompass a wide range of input data and associated uncertainty.
The use of the homogeneous data set is an attempt to isolate differ-
ences in model structural uncertainty by providing consistent in-
put data for each model.

Thus, ensemble modelling provides an estimate of the most
probable state of the system. In certain circumstances, particularly
for single-model ensembles, it can also provide an estimate of the
range of possible outcomes. For multi-model ensembles, this may
be unreliable as it is dependent on the prediction accuracy of the
ensemble members. Nonetheless, the observation here that 96%
of observed daily flows fall within the envelope defined by the dai-
ly range of predictions, suggests that this envelope might be an
approximate representation of the 95% confidence interval.

The calibration statistics (Table 1, Figs. 2 and 3) indicate that the
semi-distributed conceptual models tend to provide the best fits to
the calibration period. This is possibly related to the generally lar-

Table 3
Model weights for selected MMEs

MME DH MS TO WA SW PR SL HB LA IH

B1 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
C1 0.215 �0.004 0.118 �0.044 0.156 �0.006 �0.148 0.485 0.312 �0.119
C2 0.221 �0.002 0.124 �0.040 0.157 �0.012 �0.129 0.482 0.281 �0.098
C3 0.143 0.136 0.100 0.461 0.179
D1 0.108 0.101 0.123 0.116 0.111 0.113 0.081 0.121 0.121 0.101
D2 0.163 �0.011 0.109 0.014 0.128 0.171 0.072 0.159 0.133 0.153
D3 0.156 0.019 0.157 �0.056 0.082 0.182 0.125 0.370 0.063 �0.021
D4 0.139 �0.139 0.235 �0.053 0.055 0.161 0.094 0.371 0.075 �0.013
E1 0.060 0.005 0.002 0.033 0.209 0.192 0.000 0.331 0.108 0.058
E2 0.021 0.005 0.014 0.062 0.065 0.219 0.000 0.468 0.147 0.000
E3 0.081 0.005 0.000 0.020 0.160 0.227 0.000 0.386 0.025 0.096
E4 0.000 0.005 0.055 0.066 0.049 0.155 0.000 0.609 0.061 0.000
F2 0.100 0.074 0.077 0.087 0.084 0.112 0.074 0.150 0.137 0.104
F3 0.093 0.052 0.056 0.071 0.067 0.119 0.052 0.212 0.178 0.101
F4 0.082 0.034 0.038 0.055 0.050 0.118 0.034 0.282 0.216 0.092
H1 0.200 0.200 0.200 0.200 0.200
H2 0.181 0.140 0.154 0.274 0.251
H3 0.154 0.092 0.111 0.350 0.293
H4 0.123 0.057 0.075 0.422 0.323
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ger numbers of optimizable parameters in this type of model as
compared to the distributed models, which tend to have many
parameters that must be prescribed a priori, but few optimisable
parameters. The use of manual calibration for many of the distrib-
uted models may also compromise their calibration efficiencies.
However, in the validation period, the prediction efficiencies of
some of the distributed models tend to increase more than those
of the semi-distributed models (Table 1, Figs. 2 and 3). A notable
exception here is that the most lumped model also increases effi-
ciency quite significantly between calibration and validation.

All models except one show increased bias in the validation per-
iod, a period that is characterized by reduced rainfall and runoff
coefficients. This perhaps highlights the potential problems associ-
ated with applying models in situations that are even only slightly
different to the periods of calibration. It also has implications for
the use of rainfall-runoff models in predicting the impacts of cli-
mate change. This is usually done by calibrating a model to current
conditions then simulating using a modified or synthetic future cli-
mate input. If, as evidenced by the results of this study, there is a
widespread tendency for models to overpredict in climates with
reduced rainfall, then hydrologists may be routinely understating
the hydrological impacts of changes towards a drier climate.

Figs. 2 and 3 and Table 1 indicate considerable variability in
model calibration response between the two input data sets. Most
prominent is the substantial increase in bias by DHSVM and WA-
SIM-ETH for the homogenized data set, which includes nearest-
neighbour interpolation of precipitation. These two distributed
models both use inverse-distance interpolation in the original data
set. On the other hand, LASCAM, which also uses inverse-distance
interpolation originally, shows little change in bias. This is presum-
ably due to LASCAM’s semi-distributed lumping of precipitation in-
put and its greater calibration flexibility. Nonetheless, the
experiences of DHSVM and WASIM-ETH, together with TOPLATS,
which shows increased efficiency, highlight the importance of
uncertainties in model input for distributed models.

In validation, even the simplest of MMEs (the mean, trimmed
mean and median ensembles) consistently outperform all the
SMEs in terms of model efficiency. This happens despite the mod-
est prediction statistics of some of their constituent models. This
finding is in agreement with experiences in the atmospheric sci-
ences and also with the outcomes of Georgakakos et al. [10]. The
median ensemble and the closely related trimmed mean ensem-
bles, although having the weakest predictions of the simple
ensembles in calibration, consistently have the best validation sta-
tistics. That these ensembles outperform the mean in validation
indicates the merits of trimming each day’s extreme predictions.
It is interesting to note that each model contributes directly to
the median ensemble at least 9% of the time and that no model
contributes more than 30% of the time. There is negligible differ-
ence in the various contributions between the calibration and val-
idation periods. It is also interesting that the most frequent
contributors are not the two models with the best prediction sta-
tistics (HBV and LASCAM), but PRMS (30%), DHSVM (26%), SWAT
(25%) and TOPLATS (20%). Typically, these are the models with
the mid-ranking overall biases across the combined calibration
and validation periods (Figs. 2 and 3). The simple, unweighted
ensembles have one advantage over the weighted ensembles in
that they do not depend on an assessment of calibration perfor-
mance and can therefore be applied in ungauged catchments.

The linear regression ensembles (especially those involving all
10 SMEs) are best in calibration, but their performances degrade
noticeably in validation. This degradation is possibly associated
with differences in model cross-correlations between the calibra-
tion and validation periods. When two models have highly corre-
lated predictions there is greater scope for one of them to have a
negative regression coefficient. If that correlation is altered in the

validation period, there is potential for those negative contribu-
tions to the ensemble to behave in unfavourable ways. Removing
the regression intercept has negligible impact on performance of
the linear regression. Removal of the variables with negative coef-
ficients reduces the calibration efficiencies slightly and increases
prediction bias, but has little effect on validation efficiency.

The principal component regression ensembles remove the
undesirable aspects of high cross-correlations in the independent
variables. However, their validation predictions, although less
biased, have lower efficiencies than the multiple linear regression
ensembles. In fact, it appears that the PCR ensembles provide only
marginal improvement over the predictions of the best SME.

Ajami et al. [1] advocate the inclusion of a bias removal step in
regression-based ensembles. However, in the Dill case study, the
mean of the model predictions differs from the mean of the obser-
vations in the calibration period by less than 0.2%. This means that
any bias correction will have negligible impact on either the
ensemble predictions or their performance statistics. The general
observation from this study that regression-based combination
techniques do not provide better validation predictions than a sim-
ple mean ensemble is broadly consistent with the conclusions of
Shamseldin et al. [23] and Doblas-Reyes et al. [9]. Doblas-Reyes
et al. [9] attributed this to the lack of robustness of the regression
coefficients. In contrast, Ajami et al. [1] found that the use of
regression-based ensembles does confer greater prediction quality,
especially if biases are removed and stationarity is preserved be-
tween the calibration and validation periods. Their regression-
based ensembles give relatively poorer predictions on the one
catchment they tested with a significant decrease in mean stream-
flow between the calibration and validation periods. A change of
similar magnitude prevails in the Dill case study and may perhaps
explain the poorer performance of the multiple linear regression
and PCR ensembles reported here.

Despite this, the bias correction employed in the BMA analysis
showed modest improvements in efficiency and prediction bias
during the validation period. However, there is little difference be-
tween the performances of the BMAs with different error models. It
should be noted that the true strength of the BMA approach is
more obvious for probabilistic ensemble analysis. This aspect will
be explored in future work.

According to Figs. 6 and 7, the largest efficiencies in both cali-
bration and validation are achieved for a combination of five mod-
els, regardless of weighting exponent. This is consistent with the
conclusions of Georgakakos et al. [10] and Ajami et al. [1], who
found that four to five ensemble members give optimal results.
Georgakakos et al. [10] note that the optimal number of models
is partly dependent on the nature of the ensemble members.
Where the ensemble members are all of reasonable quality, the
ensemble predictions are likely to show significant improvement
over the predictions of the individual models. In contrast, where
the quality of the ensemble members is variable, the ensemble is
less likely to show significant improvement over the best of the
member models and the use of weighted averaging is likely yield
better predictions than an unweighted mean. This observation is
borne out in this study, where first, there is a clear inverse relation-
ship between constituent variance and the degree by which an
ensemble improves upon its best constituent, and second, the pro-
portion of all ensembles that are better than each constituent in-
creases as the weighting exponent is increased from k = 0 to k = 1.5.

Table 2 indicates that in this study a weighting exponent of
k = 1.5 provides better calibration and validation ensembles than
the other exponents tested. A larger value of k places greater
weight on the better performing models, and less weight on the
weaker models. In contrast, a value of k = 0 weights each model
uniformly. The results presented here clearly show that there are
advantages in giving greater weight to the better models. Despite
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this, it is also evident from the way the minimum efficiencies in
Figs. 6 and 7 increase steadily with increasing values of n that even
the worst performing SMEs can add value to an ensemble predic-
tion. This is further demonstrated by the presence of each SME in
at least 9% of days in the median MME and in almost half of the
best 423 unweighted calibration ensembles. In other words, every
model brings to the ensembles some useful information that may
not be adequately modelled by other SMEs.

Despite the fact that there can be substantial differences in the
ranking of the SMEs for the various different states of the condi-
tional ensembles, the use of conditional switching brings only
slight improvements over the corresponding non-conditional
ensembles. Of the three conditional ensembles tested, only the
one that discriminates between rising and falling limbs yields
appreciable gains in calibration and validation efficiencies. Ajami
et al. [1] extended the seasonal conditional model to generate sep-
arate ensembles for each calendar month, but found little improve-
ment in overall prediction quality. They attribute this lack of
improvement to the likelihood that stationarity assumptions are
more easily violated when multi-model techniques are applied
monthly. Despite there being considerable variations in individual
model performance in different months for the Dill dataset (not
shown), it is likely that stationarity issues will also compromise a
monthly switching ensemble here. As a consequence, this option
has not been explored in this study. It is likely that better condi-
tional ensembles could be achieved if the individual models had
been calibrated separately for each conditional state. This approach
has yielded good results with SMEs by combining differently
parameterized model realizations in a probablistic framework
[16]. The cost of this approach however is a substantially increased
overhead in model calibration (and a large increase in the number
of parameters required to describe the catchment) and for this rea-
son it has not been adopted in this study.

In all the conditional and non-conditional selective ensemble
approaches tested, the ensemble (or ensemble pair) that is identi-
fied as the best in the calibration period invariably degrades in per-
formance in the validation period. In contrast, the corresponding
10-member ensembles invariably improve and their validation
performance is better than that of the best calibration ensembles.
The deterioration of the best calibration ensembles is probably
due to the non-stationarity of the hydrological conditions in the
Dill catchment.

Three aspects of the weighted ensemble predictions are unex-
pected and require closer scrutiny. First, the optimal five-member
combinations found in this study do not exactly correspond to the
five best SMEs in either period. In calibration, the best combination
includes the seventh and eighth best SMEs, but not the third and
fourth. In validation, it includes the sixth, but not the second. This
implies that simply constructing an ensemble by choosing the best
five SMEs is not necessarily the best option.

Second, that none of the best 78 calibration ensembles is among
the best 78 in validation is unexpected. Even if the efficiencies
were distributed randomly with no relationship between calibra-
tion and validation efficiencies, we would expect about six MMEs
to be common to the top 78 in each period. The probability that
there are none (given a random distribution) is just 0.0016. That
there is an obvious correlation between calibration and validation
efficiencies in Fig. 8a makes these results even more extraordinary.

Third, the second best validation SME (LASCAM) does not figure
in any of the best 49 validation MMEs, yet the fourth best valida-
tion SME (DHSVM: a SME with a relatively large bias) appears in
all of the best 134 validation ensembles. Furthermore, when LAS-
CAM is added to the best validation MMEs that do not include it,
the resulting ensemble efficiencies decline. This is not the behav-
iour in combination one would expect from a model that, in isola-
tion, remains the second best in the validation period.

It is likely that these three anomalous observations have com-
mon causes. One cause is undoubtedly associated with the combi-
nation weights for k = 1.5. As one of the best SMEs in the
calibration period, LASCAM has a large weighting. It contributes
22% of the mass to the 10-member ensemble (compared to 28%
and 12% for the best and third best SMEs). However, it is one of
only two SMEs whose validation efficiency is less than its calibra-
tion efficiency (Table 1). Although the decrease is quite small, the
fact that most of the other models have increased efficiencies
means that LASCAM is effectively over-weighted in the validation
period. Given its performance in validation, a more realistic valida-
tion weighting would be 17%. In contrast, DHSVM, which has a big
increase in efficiency between calibration and validation, is effec-
tively under-weighted in the validation period. The impact of
weighting, however, does not entirely explain these anomalies,
since all three are also present in the unweighted ensembles with
k = 0 (although to a lesser extent for the second and third anoma-
lies). Part of the explanation may lie in the nonstationarity be-
tween the calibration and validation periods. However, it is not
clear why, in the absence of weighting, this would affect some
SMEs more than others, given that (except for WASIM-ETH) their
biases increase by approximately the same amount. A third possi-
ble reason could relate to cross-correlations between the SMEs,
with different models interacting differently in combination with
others. Of particular note is the observation that the cross-correla-
tions between each pair of SMEs are universally greater in the val-
idation period than in the calibration period. These synergies could
be tested further by assessment of ensemble performance on the
gauged subcatchments of the Dill River or by application of the
models to different basins with different climatic characteristics.
These will be the subjects of future studies.

This study has identified the six-member trimmed mean as
being one of the best combination methods for prediction of
streamflows in the validation period. This ensemble, together with
the unweighted mean ensemble, is used in the companion paper
by Huisman et al. [12] to predict the impacts of land use change
in the Dill catchment. Both are shown to produce consistent trends
in the response of streamflow to land use change, and their predic-
tions are of a similar magnitude and direction to those of an alter-
native probabilistic method. The consistency and coherency of
these trends lead to increased confidence in the scenario
predictions.

7. Conclusions

Ten models have been applied to the Dill catchment to predict
streamflow. The general model performance is satisfactory during
both calibration and validation periods. The semi-distributed mod-
els tend to perform best during both periods, but do not improve
their fits during the less-demanding validation period as much as
some of the distributed models that do not require as much
calibration.

Single-model ensembles are constructed for nine of these mod-
els using two separate input data sets and parameter sets. They
give prediction efficiencies that always exceed the mean efficien-
cies of the individual realizations, and in some cases, exceed the
best efficiency of the individual realizations.

These single-model ensembles are then used to construct multi-
model ensembles using a variety of combination techniques. The
study has confirmed the potential for multi-model ensembles to
provide hydrological predictions whose accuracy exceeds those
of individual models. Of the simple averaging ensembles tested,
the trimmed mean ensembles, which includes the daily model pre-
dictions of the central four or six models are superior to the mean
and regression-based ensembles during the validation period. The
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regression-based combination techniques (multiple linear regres-
sion and principal components regression) give good predictions
in the calibration period, but their performances degrade consider-
ably in the validation period.

Of the weighted ensembles, the best 10-member validation pre-
dictions are obtained from an ensemble that ascribes relatively
large weights to the best performing calibration models. The re-
sults of this study also confirm that even the weakest of the indi-
vidual models brings useful information to any ensemble it is
included in and will usually improve the predictions. The use of
conditional switching between summer and winter ensembles
and between high and low flows yield little improvement in overall
prediction quality. However, a conditional ensemble that discrim-
inates between rising and receding flows shows moderate
improvement.

For each of the multi-model combination techniques, the best
performing ensemble – usually one containing about five members
– is not neccessarily the one that contains the best five individual
models. Furthermore, with considerable non-stationarity in cli-
mate prevalent during the study period, the best ensembles in
the calibration period are typically not the best in the validation
period. Some models that predict well individually in the valida-
tion period do not combine well with other models in the
multi-model ensembles, while other models with more modest
predictions appear to revel in combination. The reasons for these
anomalies appear to relate to the weighting schemes, the non-sta-
tionarity of the climate series and cross-correlations between mod-
els, but further work is required to pinpoint the exact reasons
behind these observations.

This study has used a larger number of models, and with a lar-
ger range in complexity, than have been reported in other hydro-
logical ensemble studies. However, one limitation is that it has
been applied to only one catchment. It would be quite instructive
to explore whether the results obtained for the Dill catchment ap-
ply generally for the same models in other catchments with differ-
ent hydrological regimes.
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